【題目】如圖,Rt△ABC中,∠ACB=90°,AC=2,BC=4,CD是△ABC的中線,E是邊BC上一動(dòng)點(diǎn),將△BED沿ED折疊,點(diǎn)B落在點(diǎn)F處,EF交線段CD于點(diǎn)G,當(dāng)△DFG是直角三角形時(shí),則CE=__________.
【答案】1或
【解析】
根據(jù)題意分兩種情形進(jìn)行解答:①當(dāng)∠DGF=90°時(shí),作DH⊥BC于H.②當(dāng)∠GDF=90°,作DH⊥BC于H,DK⊥FG于K.
解:①如圖當(dāng)∠DGF=90°時(shí),作DH⊥BC于H.
在Rt△ACB中,∠ACB=90°,AC=2,BC=4,
∵ ,
∵AD=DB
∴CD=AB=,
∵DH∥AC,AD=DB,
∴CH=BH,
∴DH=DG=AC=1,
∴CG= -1,
∵DC=DB,
∴∠DCB=∠B,
∴cos∠DCB=cos∠B= ,
∴CE=CG÷cos∠DCB=
②如圖當(dāng)∠GDF=90°,作DH⊥BC于H,DK⊥FG于K.
可得四邊形DKEH是正方形,即EH=DH=1,
∵CH=BH=2,
∴.CE=1,
綜上,滿足條件的CE的值為1或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與實(shí)踐
觀察猜想
如圖1,有公共直角頂點(diǎn)的兩個(gè)不全等的等腰直角三角尺疊放在一起,點(diǎn)在上,點(diǎn)在上.
(1)在圖1中,你發(fā)現(xiàn)線段,的數(shù)量關(guān)系是___________,直線,的位置關(guān)系是________.
操作發(fā)現(xiàn)
(2)將圖1中的繞點(diǎn)逆時(shí)針旋轉(zhuǎn)一個(gè)銳角得到圖2,這時(shí)(1)中的兩個(gè)結(jié)論是否成立?作出判斷并說明理由;
拓廣探索
(3)如圖3,若只把“有公共直角頂點(diǎn)的兩個(gè)不全等的等腰直角三角尺”改為“有公共頂角為(銳角)的兩個(gè)不全等等腰三角形”,繞點(diǎn)逆時(shí)針旋轉(zhuǎn)任意一個(gè)銳角,這時(shí)(1)中的兩個(gè)結(jié)論仍然成立嗎?作出判斷,不必說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】新華商場銷售某種冰箱,每臺(tái)進(jìn)貨價(jià)為2500元.市場調(diào)研表明:當(dāng)銷售價(jià)為2900元時(shí),平均每天能售出8臺(tái);而當(dāng)銷售價(jià)每降低50元時(shí),平均每天就能多售出4臺(tái).商場要想使這種冰箱的銷售利潤平均每天達(dá)到5000元,設(shè)每臺(tái)冰箱的定價(jià)為x元,則x滿足的關(guān)系式為( )
A. (x2500)(8+4×)=5000 B. (2900x2500)(8+4×)=5000
C. (x2500)(8+4×)=5000 D. (2900x)(8+4×)=5000
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AM是△ABC的中線,D是線段AM上一點(diǎn)(不與點(diǎn)A重合).DE∥AB交AC于點(diǎn)F,CE∥AM,連接AE.
(1)如圖1,當(dāng)點(diǎn)D與M重合時(shí),求證:四邊形ABDE是平行四邊形;
(2)如圖2,當(dāng)點(diǎn)D不與M重合時(shí),(1)中的結(jié)論還成立嗎?請(qǐng)說明理由.
(3)如圖3,延長BD交AC于點(diǎn)H,若BH⊥AC,且BH=AM,求∠CAM的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線與拋物線相交于A,B兩點(diǎn),且點(diǎn)A(1,-4)為拋物線的頂點(diǎn),點(diǎn)B在x軸上。
(1)求拋物線的解析式;
(2)在(1)中拋物線的第二象限圖象上是否存在一點(diǎn)P,使△POB與△POC全等?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由;
(3)若點(diǎn)Q是y軸上一點(diǎn),且△ABQ為直角三角形,求點(diǎn)Q的坐標(biāo)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場計(jì)劃經(jīng)銷A、B兩種新型節(jié)能臺(tái)燈共50盞,這兩種臺(tái)燈的進(jìn)價(jià)、售價(jià)如下表所示.
A型 | B型 | |
進(jìn)價(jià)(元/盞) | 40 | 65 |
售價(jià)(元/盞) | 60 | 100 |
(1)若該商場購進(jìn)這批臺(tái)燈共用去2500元,問這兩種臺(tái)燈各購進(jìn)多少盞?
(2)在每種臺(tái)燈銷售利潤不變的情況下,若該商場銷售這批臺(tái)燈的總利潤不少于1400元,問至少需購進(jìn)B種臺(tái)燈多少盞?
(3)若該商場預(yù)計(jì)用不少于2500元且不多于2600元的資金購進(jìn)這批臺(tái)燈,為了打開B種臺(tái)燈的銷路,商場決定每售出一盞B種臺(tái)燈,返還顧客現(xiàn)金a元(10<a<20),問該商場該如何進(jìn)貨,才能獲得最大的利潤?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線與x軸交于點(diǎn)A、B,與y軸分別交于點(diǎn)C,其中點(diǎn),點(diǎn),且.
(1)求拋物線的解析式;
(2)點(diǎn)P是線段AB上一動(dòng)點(diǎn),過P作交BC于D,當(dāng)面積最大時(shí),求點(diǎn)P的坐標(biāo);
(3)點(diǎn)M是位于線段BC上方的拋物線上一點(diǎn),當(dāng)恰好等于中的某個(gè)角時(shí),求點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知Rt△AOB的兩條直角邊0A、08分別在y軸和x軸上,并且OA、OB的長分別是方程x2—7x+12=0的兩根(OA<0B),動(dòng)點(diǎn)P從點(diǎn)A開始在線段AO上以每秒l個(gè)單位長度的速度向點(diǎn)O運(yùn)動(dòng);同時(shí),動(dòng)點(diǎn)Q從點(diǎn)B開始在線段BA上以每秒2個(gè)單位長度的速度向點(diǎn)A運(yùn)動(dòng),設(shè)點(diǎn)P、Q運(yùn)動(dòng)的時(shí)間為t秒.
(1)求A、B兩點(diǎn)的坐標(biāo)。
(2)求當(dāng)t為何值時(shí),△APQ與△AOB相似,并直接寫出此時(shí)點(diǎn)Q的坐標(biāo).
(3)當(dāng)t=2時(shí),在坐標(biāo)平面內(nèi),是否存在點(diǎn)M,使以A、P、Q、M為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫出M點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A1、A2、……、An、An+1是x軸上的點(diǎn),且OA1=A1A2=A2A3=……=AnAn+1=1,分別過點(diǎn)A1、A2、……、An、An+1作x軸的垂線交直線y=2x于點(diǎn)B1、B2、……、Bn、Bn+1,連接A1B2、B1A2、A2B3、B2A3、……、AnBn+1、BnAn+1,依次相交于點(diǎn)P1、P2、P3、……、Pn,△A1B1P1、△A2B2P2、……、△AnBnPn的面積依次為S1、S2、……、Sn,則Sn為( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com