精英家教網 > 初中數學 > 題目詳情
精英家教網如圖,點E在正方形ABCD的邊AB上,若EB的長為1,EC的長為2,那么正方形ABCD的面積是( 。
A、
3
B、
5
C、3
D、5
分析:在Rt△BCE中,可得出BC的長,進而可求解正方形的面積.
解答:解:在Rt△BCE中,∵EC=2,BE=1,∴BC=
3
,
∴正方形的面積S為
3
×
3
=3,故選C.
點評:會求解正方形的面積問題.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網如圖,點E在正方形ABCD的邊BC的延長線上,如果BE=BD,那么∠E=
 
°.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,點E在正方形ABCD的邊AB上,AE=1,BE=2.點F在邊BC的延長線上,且CF=BC;P是邊BC上的動點(與點B不重合),PQ⊥EF,垂足為O,并交邊AD于點Q;QH⊥BC,垂足為H.
(1)求證:△QPH∽△FEB;
(2)設BP=x,EQ=y,求y關于x的函數解析式,并寫出它的定義域;
(3)試探索△PEQ是否可能成為等腰三角形?如果可能,請求出x的值;如果不可能,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•資陽)如圖,點E在正方形ABCD內,滿足∠AEB=90°,AE=6,BE=8,則陰影部分的面積是( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•曲靖)如圖,點E在正方形ABCD的邊AB上,連接DE,過點C作CF⊥DE于F,過點A作AG∥CF交DE于點G.
(1)求證:△DCF≌△ADG.
(2)若點E是AB的中點,設∠DCF=α,求sinα的值.

查看答案和解析>>

同步練習冊答案