【題目】如圖,以∠AOB的頂點(diǎn)O為圓心,適當(dāng)長為半徑畫弧,交OA于點(diǎn)C,交OB于點(diǎn)D.再分別以點(diǎn)C、D為圓心,大于CD的長為半徑畫弧,兩弧在∠AOB內(nèi)部交于點(diǎn)E,過點(diǎn)E作射線OE,連接CD.則下列說法錯(cuò)誤的是
A.射線OE是∠AOB的平分線
B.△COD是等腰三角形
C.C、D兩點(diǎn)關(guān)于OE所在直線對(duì)稱
D.O、E兩點(diǎn)關(guān)于CD所在直線對(duì)稱
【答案】D
【解析】
試題A、連接CE、DE,根據(jù)作圖得到OC=OD,CE=DE。
∵在△EOC與△EOD中,OC=OD,CE=DE,OE=OE,
∴△EOC≌△EOD(SSS)。
∴∠AOE=∠BOE,即射線OE是∠AOB的平分線,正確,不符合題意。
B、根據(jù)作圖得到OC=OD,
∴△COD是等腰三角形,正確,不符合題意。
C、根據(jù)作圖得到OC=OD,
又∵射線OE平分∠AOB,∴OE是CD的垂直平分線。
∴C、D兩點(diǎn)關(guān)于OE所在直線對(duì)稱,正確,不符合題意。
D、根據(jù)作圖不能得出CD平分OE,∴CD不是OE的平分線,
∴O、E兩點(diǎn)關(guān)于CD所在直線不對(duì)稱,錯(cuò)誤,符合題意。
故選D。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某鄉(xiāng)村距城市50km,甲騎自行車從鄉(xiāng)村出發(fā)進(jìn)城,出發(fā)1小時(shí)30分后,乙騎摩托車也從鄉(xiāng)村出發(fā)進(jìn)城,結(jié)果比甲先到1小時(shí),已知乙的速度是甲的2.5倍,求甲、乙兩人的速度。
【答案】甲速12km/h,乙速30km/h.
【解析】試題分析:設(shè)甲的速度是則乙的速度是甲、乙所用時(shí)間分別為: 小時(shí)、小時(shí);根據(jù)題意可得甲比乙多用2.5小時(shí),從而可得關(guān)于的方程,解方程即可解答此題;注意,最后要結(jié)合題意驗(yàn)根.
試題解析:設(shè)甲的速度是則乙的速度是 根據(jù)題意列方程,得
整理,得
,
解得:
經(jīng)檢驗(yàn), 是原方程的解.
則
答:甲的速度是12km/h,乙的速度是30km/h.
【題型】解答題
【結(jié)束】
24
【題目】已知求的值 。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=6cm,BC=8cm,動(dòng)點(diǎn)P從點(diǎn)C出發(fā),按C→B→A的路徑,以2cm每秒的速度運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒,當(dāng)t為時(shí),△ACP是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC的頂點(diǎn)坐標(biāo)為A(﹣2,3)B(﹣3,1)C(﹣1,2),以坐標(biāo)原點(diǎn)O為旋轉(zhuǎn)中心,順時(shí)針旋轉(zhuǎn)90°,得到△A′B′C′,點(diǎn)B′、C′分別是點(diǎn)B、C的對(duì)應(yīng)點(diǎn).
(1)求過點(diǎn)B′的反比例函數(shù)解析式;
(2)求線段CC′的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,兩個(gè)全等的等邊三角形的邊長為1m,一個(gè)微型機(jī)器人由A點(diǎn)開始按ABCDBEA的順序沿等邊三角形的邊循環(huán)運(yùn)動(dòng),行走2012m停下,則這個(gè)微型機(jī)器人停在( )
A.點(diǎn)A處 B.點(diǎn)B處 C.點(diǎn)C處 D.點(diǎn)E處
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)O為線段AB上任意一點(diǎn)(不與A、B重合),分別以AO、BO為一腰在AB的同側(cè)作等腰△AOC和等腰△BOD,OA=OC,OB=OD,∠AOC與∠BOD都是銳角,且∠AOC=∠BOD ,AD與BC交于點(diǎn)P.
(1)試說明CB=AD;
(2)若∠COD =80°,求∠APB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】完成證明并寫出推理根據(jù)
已知,如圖,∠1=132,∠ACB=48,∠2=∠3,F(xiàn)H⊥AB于H,
求證:CD⊥AB.
證明:∵∠1=132, ∠ACB=48
∴∠l+∠ACB=180
∴DE∥BC
∴∠2=∠DCB( )
又∵∠2=∠3
∴∠3=∠DCB( )
∴HF∥DC ( )
∴∠CDB=∠FHB. ( )
又∵FH⊥AB,
∴∠FHB=90
∴∠CDB=
∴CD⊥AB. ( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】應(yīng)用題
有A、B兩個(gè)商場(chǎng)以同樣價(jià)格出售同樣商品,且各自推出了不同的優(yōu)惠方案:
在A商場(chǎng)累計(jì)購物超過200元后,超出部分按80%收費(fèi);
在B商場(chǎng)累計(jì)購物滿100元后,超出的部分按90%收費(fèi)。
設(shè)累計(jì)購物x(x>200)元,用x表示A、B兩商場(chǎng)的實(shí)際費(fèi)用并指明顧客選擇到哪家購物合適?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com