【題目】如圖,AD為△ABC的高,BE為△ABC的角平分線,若∠EBA=32°,∠AEB=70°.
(1)求∠CAD的度數(shù);
(2)若點F為線段BC上任意一點,當△EFC為直角三角形時,則∠BEF的度數(shù)為
科目:初中數(shù)學 來源: 題型:
【題目】已知在平面直角坐標系中有 A(-2,1), B(3, 1),C(2, 3)三點,請回答下列問題:
(1)在坐標系內(nèi)描出點A, B, C的位置.
(2)畫出關于直線x=-1對稱的,并寫出各點坐標.
(3)在y軸上是否存在點P,使以A,B, P三點為頂點的三角形的面積為10?若存在,請直接寫出點P的坐標:若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某劇院的觀眾席的座位為扇形,且按下列分式設置:
排數(shù)(x) | 1 | 2 | 3 | 4 | … |
座位數(shù)(y) | 50 | 53 | 56 | 59 | … |
(1)按照上表所示的規(guī)律,當x每增加1時,y如何變化?
(2)寫出座位數(shù)y與排數(shù)x之間的關系式;
(3)按照上表所示的規(guī)律,某一排可能有90個座位嗎?說說你的理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在數(shù)軸上有A,B,C,D四個整數(shù)點(即各點均表示整數(shù)),且2AB=BC=3CD,若A,D兩點表示的數(shù)分別為-5和6,點E為BD的中點,在數(shù)軸上的整數(shù)點中,離點E最近的點表示的數(shù)是( )
A.2B.1
C.0D.-1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,身高1.6米的小明從距路燈的底部(點O)20米的點A沿AO方向行走14米到點C處,小明在A處,頭頂B在路燈投影下形成的影子在M處.
(1)已知燈桿垂直于路面,試標出路燈P的位置和小明在C處,頭頂D在路燈投影下形成的影子N的位置.
(2)若路燈(點P)距地面8米,小明從A到C時,身影的長度是變長了還是變短了?變長或變短了多少米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知A=2x2﹣6ax+3,B=﹣7x2﹣8x﹣1,按要求完成下列各小題.
(1)若A+B的結果中不存在含x的一次項,求a的值;
(2)當a=﹣2時,求A﹣3B的結果.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】材料閱讀
角是一種基本的幾何圖像,如圖1角可以看作由一條射線繞著它的端點旋轉(zhuǎn)而形成的圖形.鐘面上的時針與分針給我們以角的形象.如果把圖2作為鐘表的起始狀態(tài),對于一個任意時刻時針與分針的夾角度數(shù)可以用下面的方法確定.
因為時針繞鐘面轉(zhuǎn)一圈()需要12小時,所以時針每小時轉(zhuǎn)過.
如圖3中時針就轉(zhuǎn)過.
因為分針繞鐘面轉(zhuǎn)一圈()需要60分鐘,所以分針每分鐘轉(zhuǎn)過.
如圖4中分針就轉(zhuǎn)過.
再如圖5中時針轉(zhuǎn)過的度數(shù)為,分針轉(zhuǎn)過的度數(shù)記為,此時,分針轉(zhuǎn)過的度數(shù)大于時針轉(zhuǎn)過的度數(shù),所以時針與分針的夾角為.
知識應用
請使用上述方法,求出時針與分針的夾角.
拓廣探索
張老師某周六上午7點多去菜市場買菜,走時發(fā)現(xiàn)家中鐘表時鐘與分針的夾角是直角,買菜回到家發(fā)現(xiàn)鐘表時針與分針的夾角還是直角,可以確定的是張老師家的鐘表沒有故障,走時正常,且回家時間還沒到上午8點,請利用上述材料所建立數(shù)學模型列方程,求出張老師約7點多少分出門買菜?約7點多少分回到家?(結果用四舍五入法精確到分.)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖 1,兩個完全相同的三角形紙片 ABC 和 DEC 重合放置,其中∠C=90°,∠B=∠E=30°.
⑴ 操作發(fā)現(xiàn):如圖 2,固定△ABC,使△DEC 繞點 C 旋轉(zhuǎn),當點 D 恰好落在 AB 邊上時, 填空:
①線段 DE 與 AC 的位置關系是 ;
②設△BDC 的面積為 S1,△AEC 的面積為 S2,則 S1 與 S2 的數(shù)量關系是 .
⑵ 猜想論證
當△DEC 繞點 C 旋轉(zhuǎn)到如圖 3 所示的位置時,請猜想(1)中 S1 與 S2 的數(shù)量關系是否仍 然成立?若成立,請證明;若不成立,請說明理由.
⑶ 拓展探究
已知∠ABC=60°,BD 平分∠ABC,BD=CD,BE=6,DE∥AB 交 BC 于點 E(如圖 4).若在射線 BA 上存在點 F,使 S△DCF=S△BDE,請求相應的 BF 的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】把一個足球垂直水平地面向上踢,時間為t(秒)時該足球距離地面的高度h(米)適用公式h=20t﹣5t2(0≤t≤4).
(1)當t=3時,求足球距離地面的高度;
(2)當足球距離地面的高度為10米時,求t;
(3)若存在實數(shù)t1,t2(t1≠t2)當t=t1或t2時,足球距離地面的高度都為m(米),求m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com