【題目】如圖,已知△ABC,
(1)尺規(guī)作圖:作AD平分∠BAC交BC于D點(diǎn),再作AD的垂直平分線交AB于E點(diǎn),交AC于F點(diǎn)(保留作圖痕跡,不寫作法);
(2)連接DE,DF證明:四邊形AEDF是菱形;
(3)若BE=7,AF=4,CD=3,求BD的長.
【答案】(1)作圖見解析;(2)證明見解析;(3)BD=;
【解析】
(1)∠BAC的平分線AD,線段AD的垂直平分線MN,分別交AB、AC于點(diǎn)E、F,如圖所示;
(2)EF是線段AD的垂直平分線得出AE=DE,AF=DF,再由AD平分∠BAC證得∠EDA=∠CAD,所以DE∥AC即可證明平行四邊形AEDF是菱形;
(3)由(2)AEDF是菱形,推出AE=DE=AF=DF=4,由DE∥AC,推出由此即可解決問題.
(1)作圖如下:
(2)∵根據(jù)作法可知:EF是線段AD的垂直平分線,
∴AE=DE,AF=DF,
∴∠EAD=∠EDA,
∵AD平分∠BAC,
∴∠BAD=∠CAD,
∴∠EDA=∠CAD,
∴DE∥AC,
同理可得:DF∥AE,
∴四邊形AEDF是平行四邊形,
∵AE=DE,
∴平行四邊形AEDF是菱形;
(3)∵AEDF是菱形,
∴AE=DE=DF=AF,
∵AF=4,
∴AE=DE=DF=AF=4,
∵DE∥AC,
∴
∴=,
解得:BD=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,CB⊥AB,D為圓上一點(diǎn),且AD∥OC,連接CD,AC,BD,AC與BD交于點(diǎn)M.
(1)求證:CD為⊙O的切線;
(2)若CD=AD,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖1,在△ABC中,∠ACB=90°,BC=AC,點(diǎn)D在AB上,DE⊥AB交BC于E,點(diǎn)F是AE的中點(diǎn)
(1)寫出線段FD與線段FC的關(guān)系并證明;
(2)如圖2,將△BDE繞點(diǎn)B逆時針旋轉(zhuǎn)α(0°<α<90°),其它條件不變,線段FD與線段FC的關(guān)系是否變化,寫出你的結(jié)論并證明;
(3)將△BDE繞點(diǎn)B逆時針旋轉(zhuǎn)一周,如果BC=4,BE=2,直接寫出線段BF的范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某品牌牛奶供應(yīng)商提供A,B,C,D四種不同口味的牛奶供學(xué)生飲用.某校為了了解學(xué)生對不同口味的牛奶的喜好,對全校訂牛奶的學(xué)生進(jìn)行了隨機(jī)調(diào)查,并根據(jù)調(diào)查結(jié)果繪制了如下兩幅不完整的統(tǒng)計(jì)圖.根據(jù)統(tǒng)計(jì)圖的信息解決下列問題:
(1)本次調(diào)查的學(xué)生有多少人?
(2)補(bǔ)全上面的條形統(tǒng)計(jì)圖;
(3)扇形統(tǒng)計(jì)圖中C對應(yīng)的中心角度數(shù)是_____;
(4)若該校有600名學(xué)生訂了該品牌的牛奶,每名學(xué)生每天只訂一盒牛奶,要使學(xué)生能喝到自己喜歡的牛奶,則該牛奶供應(yīng)商送往該校的牛奶中,A,B口味的牛奶共約多少盒?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在“扶貧攻堅(jiān)”活動中,某單位計(jì)劃選購甲、乙兩種物品慰問貧困戶.已知甲物品的單價比乙物品的單價高10元,若用500元單獨(dú)購買甲物品與450元單獨(dú)購買乙物品的數(shù)量相同.
①請問甲、乙兩種物品的單價各為多少?
②如果該單位計(jì)劃購買甲、乙兩種物品共55件,總費(fèi)用不少于5000元且不超過5050元,通過計(jì)算得出共有幾種選購方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,半⊙O的半徑為2,點(diǎn)P是⊙O直徑AB延長線上的一點(diǎn),PT切⊙O于點(diǎn)T,M是OP的中點(diǎn),射線TM與半⊙O交于點(diǎn)C.若∠P=20°,則圖中陰影部分的面積為( )
A. 1+ B. 1+ C. 2sin20°+ D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖,△ABC中AB=AC,AE是角平分線,BM平分∠ABC交AE于點(diǎn)M,經(jīng)過B、M兩點(diǎn)的⊙O交BC于G,交AB于點(diǎn)F,F(xiàn)B恰為⊙O的直徑.
(1)求證:AE與⊙O相切;
(2)當(dāng)BC=6,cosC=,求⊙O的直徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖為某景區(qū)五個景點(diǎn)A,B,C,D,E的平面示意圖,B,A在C的正東方向,D在C的正北方向,D,E在B的北偏西30°方向上,E在A的西北方向上,C,D相距1000m,E在BD的中點(diǎn)處.
(1)求景點(diǎn)B,E之間的距離;
(2)求景點(diǎn)B,A之間的距離.(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若一組數(shù)據(jù)a1,a2,a3的平均數(shù)為4,方差為3,那么數(shù)據(jù)a1+2,a2+2,a3+2的平均數(shù)和方差分別是( 。
A. 4,3B. 6,3C. 3,4D. 6,5
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com