【題目】如圖,△AOB是直角三角形,∠AOB=90°,OB=2OA,點(diǎn)A在反比例函數(shù)y=的圖象上.若點(diǎn)B在反比例函數(shù)y=的圖象上,則k的值為( )
A.-4 B.4 C.-2 D.2
【答案】A.
【解析】
試題解析:過點(diǎn)A,B作AC⊥x軸,BD⊥x軸,分別于C,D.
設(shè)點(diǎn)A的坐標(biāo)是(m,n),則AC=n,OC=m,
∵∠AOB=90°,
∴∠AOC+∠BOD=90°,
∵∠DBO+∠BOD=90°,
∴∠DBO=∠AOC,
∵∠BDO=∠ACO=90°,
∴△BDO∽△OCA,
∴,
∵OB=2OA,
∴BD=2m,OD=2n,
因?yàn)辄c(diǎn)A在反比例函數(shù)y=的圖象上,則mn=1,
∵點(diǎn)B在反比例函數(shù)y=的圖象上,B點(diǎn)的坐標(biāo)是(-2n,2m),
∴k=-2n2m=-4mn=-4.
故選A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列各組數(shù)中,結(jié)果一定相等的為( )
A. ﹣a2與(﹣a)2B. ﹣(﹣a)2與a2
C. ﹣a2與﹣(﹣a)2D. (﹣a)2與﹣(﹣a)2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,CD是高,CE是中線,CE=CB,點(diǎn)A、D關(guān)于點(diǎn)F對(duì)稱,過點(diǎn)F作FG∥CD,交AC邊于點(diǎn)G,連接GE.若AC=18,BC=12,則△CEG的周長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖、四邊形ABCD中,AB=AD=6,∠A=60°,∠ADC=150°,已知四邊形的周長為30,求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AD=3,AB=9,過點(diǎn)A,C作相距為3的平行線段AE,CF,分別交CD,AB于點(diǎn)E,F(xiàn),則FE的長是( )
A.5
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,對(duì)于P(m,n),若點(diǎn)Q的坐標(biāo)為(m,|m-n|),則稱點(diǎn)Q為點(diǎn)P的關(guān)聯(lián)點(diǎn).
(1)請(qǐng)直接寫出點(diǎn)(2,2)的關(guān)聯(lián)點(diǎn);
(2)如果點(diǎn)P在一次函數(shù)y=x-1的圖像上,其“關(guān)聯(lián)點(diǎn)”Q與點(diǎn)P重合,求點(diǎn)P的坐標(biāo);
(3)已知點(diǎn)P在一次函數(shù)y=x(x>0)和一次函數(shù)y=x(x>0)所圍成的區(qū)域內(nèi),且點(diǎn)P的“關(guān)聯(lián)點(diǎn)”Q在二次函數(shù)的圖像上,求線段PQ的最大值及此時(shí)點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“皮克定理”是用來計(jì)算頂點(diǎn)在整點(diǎn)的多邊形面積的公式,公式表達(dá)式為,孔明只記得公式中的S表示多邊形的面積,a和b中有一個(gè)表示多邊形邊上(含頂點(diǎn))的整點(diǎn)個(gè)數(shù),另一個(gè)表示多邊形內(nèi)部的整點(diǎn)個(gè)數(shù),但不記得究竟是a還是b表示多邊形內(nèi)部的整點(diǎn)個(gè)數(shù),請(qǐng)你選擇一些特殊的多邊形(如圖1)進(jìn)行驗(yàn)證,得到公式中表示多邊形內(nèi)部的整點(diǎn)個(gè)數(shù)的字母是______,并運(yùn)用這個(gè)公式求得圖2中多邊形的面積是____________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com