【題目】學(xué)習(xí)完第五章《相交線與平行線》后,王老師布置了一道兒何證明題如下:“如圖,已知直線AB,CD被直線EF所截,FG平分∠EFD,∠1=∠2=80°,求∠BGF的度數(shù).”善于動(dòng)腦的小軍快速思考,找到了解題方案,并書寫出了如下不完整的解題過程.請(qǐng)你將該題解題過程補(bǔ)充完整:
解:∵∠1=∠2=80°(已知)
∴AB∥CD
∴∠BGF+∠3=180°
∵∠2+∠EFD=180°(鄰補(bǔ)角的定義),
∴∠EFD= °(等式性質(zhì))
∵FG平分∠EFD(已知),
∴∠EFD=2∠3(角平分線的定義)
∴∠3= °(等式性質(zhì))
∴∠BGF= °(等式性質(zhì))
【答案】同位角相等,兩直線平行,兩直線平行,同旁內(nèi)角互補(bǔ),100,50,130.
【解析】
根據(jù)平行線性質(zhì)和判定,鄰補(bǔ)角定義,角平分線定義和等式性質(zhì)進(jìn)行分析即可.
解:∵∠1=∠2=80°(已知)
∴AB∥CD(同位角相等,兩直線平行)
∴∠BGF+∠3=180°(兩直線平行,同旁內(nèi)角互補(bǔ))
∵∠2+∠EFD=180°(鄰補(bǔ)角的定義),
∴∠EFD=100°(等式性質(zhì))
∵FG平分∠EFD(已知),
∴∠EFD=2∠3(角平分線的定義)
∴∠3=50°(等式性質(zhì))
∴∠BGF=130°(等式性質(zhì))
故答案為:同位角相等,兩直線平行,兩直線平行,同旁內(nèi)角互補(bǔ),100,50,130.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,≌,點(diǎn)在邊上,,和相交于點(diǎn).下列說法:
(1)若,則;
(2)若,則;
(3)若≌,,則.
其中正確的有( )個(gè).
A. 3個(gè)B. 2個(gè)C. 1個(gè)D. 0個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,是邊上的兩點(diǎn),且有,則圖中等腰三角形的個(gè)數(shù)是( )
A.2B.6C.5D.7
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P是正三角形ABC內(nèi)的一點(diǎn),且PA=6,PB=8,PC=10,若將△PAC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)后得到△P′AB.
(1)求點(diǎn)P與點(diǎn)P′之間的距離;
(2)求∠APB的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長均為l的小正方形網(wǎng)格紙中,△ABC的頂點(diǎn),A、B、C均在格點(diǎn)上,O為直角坐標(biāo)系的原點(diǎn),點(diǎn)A(-1,0)在x軸上.
(1)以O為位似中心,將△ABC放大,使得放大后的△A1B1C1與△ABC的相似比為2:1,要求所畫△A1B1C1與△ABC在原點(diǎn)兩側(cè);
(2)分別寫出B1、C1的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,AE交⊙O于點(diǎn)F,且與⊙O的切線CD互相垂直,垂足為D.
(1)求證:∠EAC=∠CAB;
(2)若CD=4,AD=8,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】第二十四屆冬季奧林匹克運(yùn)動(dòng)會(huì)將于2022年在北京市和張家口市舉行.為了調(diào)查學(xué)生對(duì)冬奧知識(shí)的了解情況,從甲、乙兩校各隨機(jī)抽取20名學(xué)生進(jìn)行了相關(guān)知識(shí)測試,獲得了他們的成績(百分制),并對(duì)數(shù)據(jù)(成績)進(jìn)行了整理、描述和分析.下面給出了部分信息.
a.甲校20名學(xué)生成績的頻數(shù)分布表和頻數(shù)分布直方圖如下:
甲校學(xué)生樣本成績頻數(shù)分布表
成績m(分) | 頻數(shù)(人數(shù)) | 頻率 |
1 | 0.05 | |
c | 0.10 | |
3 | 0.15 | |
a | b | |
6 | 0.30 | |
合計(jì) | 20 | 1.0 |
表1
圖1
b.甲校成績?cè)?/span>的這一組的具體成績是:81 81 89 83 89 82 83 89
c.甲、乙兩校成績的平均分、中位數(shù)、眾數(shù)、方差如下:
學(xué)校 | 平均分 | 中位數(shù) | 眾數(shù) | 方差 |
甲 | 84 | n | 89 | 129.7 |
乙 | 84.2 | 85 | 85 | 138.6 |
表2
根據(jù)以上圖表提供的信息,解答下列問題:
(1)表1中a=______;表2中的中位數(shù)n =_______;
(2)補(bǔ)全圖1甲校學(xué)生樣本成績頻數(shù)分布直方圖;
(3)在此次測試中,某學(xué)生的成績是84分,在他所屬學(xué)校排在前10名,由表中數(shù)據(jù)可知該學(xué)生是______校的學(xué)生(填“甲”或“乙”),理由是________;
(4)假設(shè)甲校1000名學(xué)生都參加此次測試,若成績80分及以上為優(yōu)秀,估計(jì)成績優(yōu)秀的學(xué)生人數(shù)為_______人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=x2-2mx+m2-1.
(1)當(dāng)二次函數(shù)的圖象經(jīng)過坐標(biāo)原點(diǎn)O(0,0)時(shí),求二次函數(shù)的解析式;
(2)如圖,當(dāng)m=2時(shí),該拋物線與y軸交于點(diǎn)C,頂點(diǎn)為D,求C、D兩點(diǎn)的坐標(biāo);
(3)在(2)的條件下,x軸上是否存在一點(diǎn)P,使得PC+PD最短?若P點(diǎn)存在,求出P點(diǎn)的坐標(biāo);若P點(diǎn)不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com