【題目】今年10月份某商場用19600元同時購進A、B兩種新型節(jié)能日光燈共440盞,A型日光燈每盞進價為40元,售價為60元,B型日光燈每盞進價為50元,售價為80元.
(1)求10月份兩種新型節(jié)能日光燈各購進多少盞?
(2)將10月份購買的日光燈從生產(chǎn)基地運往商場的過程中,A型日光燈出現(xiàn)的損壞,B型日光燈完好無損,商場決定對A、B兩種日光燈的售價進行調(diào)整,使這批日光燈全部售完后,商場可獲得10664元的利潤型日光燈在原售價基礎上提高,問A型日光燈調(diào)整后的售價為多少元?
(3)進入11月份,B型日光燈的需求量增大,于是商場在籌備“雙十一”促銷活動時,決定去甲、乙兩個生產(chǎn)基地只購進一批B型日光燈,甲、乙生產(chǎn)基地給出了不同的優(yōu)惠措施:
甲生產(chǎn)基地:B型日光燈出廠價為每盞50元,折扣如表一所示
乙生產(chǎn)基地:B型日光燈出廠價為每盞47元,同時當出廠總金額達一定數(shù)量后還可按表二返現(xiàn)金.
表一
甲生產(chǎn)基地 | |
一次性購買的數(shù)量 | 折扣數(shù) |
不超過150盞的部分 | 折 |
超過150盞的部分 | 9折 |
表二
乙生產(chǎn)基地 | |
出廠總金額 | 返現(xiàn)金 |
不超過5640元 | 0元 |
超過5640元,但不超過9353元 | 返現(xiàn)300元 |
超過9353元 | 先返現(xiàn)出廠總金額的后,再返現(xiàn)206元 |
已知該商場在甲生產(chǎn)基地購買B型日光燈共支付7350元,在乙生產(chǎn)基地購買B型日光燈共支付9006元,若將在兩個生產(chǎn)基地購買的B型日光燈的總量改由在乙生產(chǎn)基地一次性購買,則支付總金額比在甲、乙兩生產(chǎn)基地分別購買的支付金額之和可節(jié)約多少元?
【答案】(1)購進A型日光燈240盞,B型日光燈200盞;(2)A型日光燈調(diào)整后的價格為66元;(3)若將在兩個生產(chǎn)基地購買的B型日光燈的總量改由在乙生產(chǎn)基地一次性購買,則支付總金額比在甲、乙兩生產(chǎn)基地分別購買的支付金額之和可節(jié)302.82元.
【解析】
根據(jù)兩種日光燈的總量是440,兩種日光燈的總價是19600,可得方程組,即可得解;
設A型日光燈調(diào)整后的價格為z元,根據(jù)全部售完后可獲得10664元的利潤,列出關于z的方程,計算即可;
根據(jù)在甲生產(chǎn)基地支付7350元,在乙生產(chǎn)基地支付9006元,求的在甲、乙生產(chǎn)基地購買的日光燈的數(shù)量之和;此數(shù)量的日光燈在與由在乙生產(chǎn)基地一次性購買的所花費用進行比較.
設購進A型日光燈x盞,B型日光燈(400﹣x)盞,
40x+50(400﹣x)=19600,
解得:x=240,
則B型日光燈有200盞,
答:購進A型日光燈240盞,B型日光燈200盞,
設A型日光燈調(diào)整后的價格為z元.
此時B型日光燈調(diào)整后的價格為元,
可列方程為:
,
解得:,
答:A型日光燈調(diào)整后的價格為66元;
解:,
該商場在甲地購買的B型日光燈超過150臺,
設該商場在甲地購買的B型日光燈m臺,
則:,
解得:,
設該商場在乙地購買的B型日光燈n臺,
,
解得:,
,
設該商場在甲、乙地購買的B型日光燈共353臺,
若設該商場只在乙地購買的B型日光燈,
則
所花費用:,
節(jié)約的錢數(shù):,
若將在兩個生產(chǎn)基地購買的B型日光燈的總量改由在乙生產(chǎn)基地一次性購買,則支付總金額比在甲、乙兩生產(chǎn)基地分別購買的支付金額之和可節(jié)約元.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,長方形放置在平面直角坐標系中,已知點,點,動點從出發(fā),沿以每秒個單位的速度運動,同時,動點從出發(fā),沿以每秒個單位的速度運動.當其中一點到達點時,兩動點同時停止運動設運動時間為.
(1)當______時,點追上點,此時點的坐標為_______.
(2)當時,分別取、的中點、,如果四邊形的面積等于,請求出時間的取值;
(3)如圖2,連接,已知,在(2)問的條件下,過點作于點,問在長方形的四條邊上是否存在點,使得線段,若存在,請直接寫出點的坐標,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】規(guī)定兩數(shù)a,b之間的一種運算,記作(a,b):如果,那么(a,b)=c.
例如:因為23=8,所以(2,8)=3.
(1)根據(jù)上述規(guī)定,填空:
(3,9)=_____,(5,125)=_____,(,)=_____,(-2,-32)=_____.
(2)令,,,試說明下列等式成立的理由:.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC為等腰直角三角形,∠ABC=90°,AB=BC,點A在x軸的負半軸上,點B是y軸上的一個動點,點C在點B的上方,
(1)如圖1當點A的坐標為(﹣3,0),點B的坐標為(0,1)時,求點C的坐標;
(2)設點A的坐標為(a,0),點B的坐標為(0,b).過點C作CD⊥y軸于點D,在點B運動過程中(不包含△ABC的一邊與坐標軸重合的情況),猜想線段OD的長與a、b的數(shù)量關系,并說明理由;
(3)在(2)的條件下如圖4,當x軸平分∠BAC時,BC交x軸于點E,過點作CF⊥x軸于點F.說明此時線段CF與AE的數(shù)量關系(用含a、b的式子表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,如圖點A(1,1),B(2,﹣3),點P為x軸上一點,當|PA﹣PB|最大時,點P的坐標為( 。
A. (﹣1,0) B. (,0) C. (,0) D. (1,0)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩校參加區(qū)教育局舉辦的學生英語口語競賽,兩校參賽人數(shù)相等.比賽結(jié)束后,發(fā)現(xiàn)學生成績分別為7分、8分、9分、10分(滿分為10分).依據(jù)統(tǒng)計數(shù)據(jù)繪制了如下尚不完整的統(tǒng)計圖和統(tǒng)計表.
(1)在圖①中,“7分”所在扇形的圓心角等于 °;
(2)請你將圖②所示的統(tǒng)計圖補充完整;
(3)經(jīng)計算,乙校的成績的平均數(shù)是8.3分,中位數(shù)是8分,請寫出甲校的成績的平均數(shù)、中位數(shù),并從平均數(shù)和中位數(shù)的角度分析哪個學校的成績較好;
(4)如果該教育局要組織8人的代表隊參加市級團體賽,為便于管理,決定從這兩所學校中的一所挑選參賽選手,請你分析,應選哪所學校?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com