【題目】(2016.鎮(zhèn)江)如圖,AD、BC相交于點(diǎn)O,AD=BC,∠C=∠D=90°.
(1)若∠ABC=35°,求∠CAO的度數(shù);
(2)求證:CO=DO
【答案】(1)20°;(2)見(jiàn)解析;
【解析】(1)根據(jù)HL證明Rt△ABC≌Rt△BAD;由全等的性質(zhì)得∠BAD=∠ABC,根據(jù)直角三角形兩直角互余可求∠BAC=55 ,從而可求出∠CAO的度數(shù);
(2)利用全等三角形的性質(zhì)可得∠BAD=∠ABC,BC=AD,從而可證求證CO=DO.
∵∠D=∠C=90°,
∴△ABC和△BAD都是Rt△,
在Rt△ABC和Rt△BAD中,
∵AD=BC,AB=BA,
∴Rt△ABC≌Rt△BAD(HL);
∴∠BAD=∠ABC=35°.
∵∠ABC=35°,
∴∠BAC=90-35=55,
∴∠CAO=55-35=20.
(2)證明:∵Rt△ABC≌Rt△BAD,
∴∠BAD=∠ABC,BC=AD,
∴AO=BO,
∴BC-BO=AD-AO,
∴CO=DO.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,∠B=60°,CD是⊙O的直徑,點(diǎn)P是CD延長(zhǎng)線上的一點(diǎn),且AP=AC.
(1)求證:PA是⊙O的切線;
(2)若AB=4+ ,BC=2 ,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,對(duì)角線BD的垂直平分線MN與AD相交于點(diǎn)M,與BD相交于點(diǎn)N,連接BM,DN.
(1)求證:四邊形BMDN是菱形;
(2)若AB=4,AD=8,求MD的長(zhǎng)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AC與BD相交于O,∠1=∠4,∠2=∠3,△ABC的周長(zhǎng)為25cm,△AOD的周長(zhǎng)為17cm,則AB=( )
A. 4cm ; B. 8cm; C. 12cm; D. 無(wú)法確定;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知:∠B=∠DEF,AB=DE,要說(shuō)明△ABC≌△DEF.(1)若以“ASA”為依據(jù),還缺條件 _________________ ;(2)若以“AAS”為依據(jù),還缺條件___________________;(3)若以“SAS”為依據(jù),還缺條件___________________;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,AB=AC,點(diǎn)D是射線CB上的一動(dòng)點(diǎn)(不與點(diǎn)B、C重合),以AD為一邊在AD的右側(cè)作△ADE,使AD=AE,∠DAE=∠BAC,連接CE.
(1)如圖1,當(dāng)點(diǎn)D在線段CB上,且∠BAC=90°時(shí),那么∠DCE= 度;
(2)設(shè)∠BAC= ,∠DCE= .
① 如圖2,當(dāng)點(diǎn)D在線段CB上,∠BAC≠90°時(shí),請(qǐng)你探究與之間的數(shù)量關(guān)系,并證明你的結(jié)論;
② 如圖3,當(dāng)點(diǎn)D在線段CB的延長(zhǎng)線上,∠BAC≠90°時(shí),請(qǐng)將圖3補(bǔ)充完整,并直接寫(xiě)出此時(shí)與之間的數(shù)量關(guān)系(不需證明).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】正方形ABCD中,F是AB上一點(diǎn),H是BC延長(zhǎng)線上一點(diǎn),連接FH,將△FBH沿FH翻折,使點(diǎn)B的對(duì)應(yīng)點(diǎn)E落在AD上,EH與CD交于點(diǎn)G,連接BG交FH于點(diǎn)M,當(dāng)GB平分∠CGE時(shí),BM=2,AE=8,則ED=______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)軸上有A、B兩個(gè)點(diǎn).
(1)如圖1,若AB=a,M是AB的中點(diǎn),C為線段AB上的一點(diǎn),且,則AC= ,CB= ,MC= (用含a的代數(shù)式表示);
(2)如圖2,若A、B、C三點(diǎn)對(duì)應(yīng)的數(shù)分別為﹣40,﹣10,20.
①當(dāng)A、C兩點(diǎn)同時(shí)向左運(yùn)動(dòng),同時(shí)B點(diǎn)向右運(yùn)動(dòng),已知點(diǎn)A、B、C的速度分別為8個(gè)單位長(zhǎng)度/秒、4個(gè)單位長(zhǎng)度/秒、2個(gè)單位長(zhǎng)度/秒,點(diǎn)M為線段AB的中點(diǎn),點(diǎn)N為線段BC的中點(diǎn),在B、C相遇前,在運(yùn)動(dòng)多少秒時(shí)恰好滿足:MB=3BN.
②現(xiàn)有動(dòng)點(diǎn)P、Q都從C點(diǎn)出發(fā),點(diǎn)P以每秒1個(gè)單位長(zhǎng)度的速度向終點(diǎn)A移動(dòng);當(dāng)點(diǎn)P移動(dòng)到B點(diǎn)時(shí),點(diǎn)Q才從C點(diǎn)出發(fā),并以每秒3個(gè)單位長(zhǎng)度的速度向左移動(dòng),且當(dāng)點(diǎn)P到達(dá)A點(diǎn)時(shí),點(diǎn)Q也停止移動(dòng)(若設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t).當(dāng)PQ兩點(diǎn)間的距離恰為18個(gè)單位時(shí),求滿足條件的時(shí)間t值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算:
(1)45+(﹣20);
(2)(﹣8)﹣(﹣1);
(3)|﹣10|+|+8|;
(4)(﹣12)﹣5+(﹣14)﹣(﹣39);
(5)0.47﹣4﹣(﹣1.53)﹣1;
(6)36﹣76+(﹣23)﹣105;
(7)﹣20+|﹣14|﹣(﹣18)﹣13;
(8)(+1.75)+(﹣)+(+)+(+1.05)+(﹣)+(+2.2).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com