【題目】如圖 1,點(diǎn) A(2,1),點(diǎn) A 與點(diǎn) B 關(guān)于 y 軸對(duì)稱,AC∥y 軸,且 AC=3,連接 BC 交 y 軸于點(diǎn) D.
(1)點(diǎn) B 的坐標(biāo)為_____,點(diǎn) C 的坐標(biāo)為_____;
(2)如圖 2,連接 OC,OC 平分∠ACB,求證:OB⊥OC;
(3)如圖 3,在(2)的條件下,點(diǎn) P 為 OC 上一點(diǎn),且∠PAC=45°,求點(diǎn) P 的坐標(biāo).
【答案】(1)(-2,1) (2,4);(2)見(jiàn)解析;(3)P(1,2)
【解析】
(1)由軸對(duì)稱可得B、C點(diǎn)坐標(biāo);
(2)由OC 平分∠ACB,可得∠1=∠2,又∠3=∠2,可得CD=DO,CE⊥y 軸于點(diǎn) E,連接 AB 交 y 軸于點(diǎn) F,可證的△CDE≌△BDF(AAS),可得CD=BD,BD=CD=OD,∠DBO=∠DOB,可得OB⊥OC;
(3)連接 BP,作 PQ⊥x 軸于點(diǎn) Q,由點(diǎn) A,點(diǎn) B 關(guān)于 y 軸對(duì)稱 可得∠BAC =90,∠PAC =45,PA 平分∠CAB,可證的OB=OP,可得△BOF≌△POQ(AAS).可得PQ=BF=2,OQ=OF=1,P(1,2).
(1)B(-2,1),C(2,4).
(2)∵OC 平分∠ACB,
∴∠1=∠2,
∵AC∥y 軸,
∴∠3=∠2,
∴∠1=∠3,
∴CD=DO.
作 CE⊥y 軸于點(diǎn) E,連接 AB 交 y 軸于點(diǎn) F,
∵點(diǎn) A,點(diǎn) B 關(guān)于 y 軸對(duì)稱,
∴BF⊥y 軸,
∴∠CED=∠BFD,
∵B(-2,1),C(2,4),
∴CE=BF=2,
在△CDE 和△BDF 中,
CED BFDCDE BDF,CE BF,
∴△CDE≌△BDF(AAS).
∴CD=BD,
∴BD=CD=OD,
∴∠DBO=∠DOB,
∵∠1+∠3+∠DBO+∠DOB=180°,
∴∠3+∠DOB=90°,
∴OB⊥OC;
(3)連接 BP,作 PQ⊥x 軸于點(diǎn) Q,
∵點(diǎn) A,點(diǎn) B 關(guān)于 y 軸對(duì)稱,
∴AB⊥y 軸,
∴∠BAC =90,
∵∠PAC =45,
∴PA 平分∠CAB,
∵OC 平分∠ACB,
∴BP 平分∠ABC.
∴∠BPC=135°,
∴∠BPO=45°.
∵∠BOP=90°,
∴OB=OP,
在△BOF 和△POQ 中,
BFO PQO,BOF POQ,OB OP,
∴△BOF≌△POQ(AAS).
∴PQ=BF=2,OQ=OF=1,
∴P(1,2).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正方形ABCD中,點(diǎn)P在射線AC上,作點(diǎn)P關(guān)于直線CD的對(duì)稱點(diǎn)Q,作射線BQ交射線DC于點(diǎn)E,連接BP.
(1)當(dāng)點(diǎn)P在線段AC上時(shí),如圖1.
①依題意補(bǔ)全圖1;
②若EQ=BP,則∠PBE的度數(shù)為 ,并證明;
(2)當(dāng)點(diǎn)P在線段AC的延長(zhǎng)線上時(shí),如圖2.若EQ=BP,正方形ABCD的邊長(zhǎng)為1,請(qǐng)寫(xiě)出求BE長(zhǎng)的思路.(可以不寫(xiě)出計(jì)算結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某地在山區(qū)修建高速公路時(shí)需挖通一條隧道,為估計(jì)這條隧道的長(zhǎng)度需測(cè)出這座山A、B間的距離,結(jié)合所學(xué)知識(shí)或方法,設(shè)計(jì)測(cè)量方案你能給出什么好的方法嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖①,已知:在△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過(guò)點(diǎn)A,BD⊥直線m, CE⊥直線m,垂足分別為點(diǎn)D、E.證明:DE=BD+CE.
(2)如圖②,將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點(diǎn)都在直線m上,并且有∠BDA=∠AEC=∠BAC=α,其中α為任意鈍角.請(qǐng)問(wèn)結(jié)論DE=BD+CE是否成立?如成立,請(qǐng)你給出證明;若不成立,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD為平行四邊形,E為BC的中點(diǎn),連接AE并延長(zhǎng)交DC的延長(zhǎng)線于點(diǎn)F.
(1)求證:△ABE≌△FCE;
(2)過(guò)點(diǎn)D作DG⊥AE于點(diǎn)G,H為DG的中點(diǎn).判斷CH與DG的位置關(guān)系, 并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)y=mx2+(m2﹣m)x﹣2m+1的圖象與x軸交于點(diǎn)A、B,與y軸交于點(diǎn)C,頂點(diǎn)D的橫坐標(biāo)為1.
(1)求二次函數(shù)的表達(dá)式及A、B的坐標(biāo);
(2)若P(0,t)(t<﹣1)是y軸上一點(diǎn),Q(﹣5,0),將點(diǎn)Q繞著點(diǎn)P順時(shí)針?lè)较蛐D(zhuǎn)90°得到點(diǎn)E.當(dāng)點(diǎn)E恰好在該二次函數(shù)的圖象上時(shí),求t的值;
(3)在(2)的條件下,連接AD、AE.若M是該二次函數(shù)圖象上一點(diǎn),且∠DAE=∠MCB,求點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在 Rt△ABC 中,∠A=30°,∠ACB=90°,點(diǎn) D 為 AC 中點(diǎn), 點(diǎn) E 為 AB 邊上一動(dòng)點(diǎn),AE=DE,延長(zhǎng) ED 交 BC 的延長(zhǎng)線于點(diǎn) F.
(1)求證:△BEF 是等邊三角形;
(2)若 AB=12,求 DE 的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某幼兒園舉行用火柴棒擺“金魚(yú)”比賽,如圖所示,請(qǐng)仔細(xì)觀察并找出規(guī)律,解答下列問(wèn)題:
(1)按照此規(guī)律,擺第n個(gè)圖時(shí),需用火柴棒的根數(shù)是多少?
(2)求擺第50個(gè)圖時(shí)所需用的火柴棒的根數(shù);
(3)按此規(guī)律用1202根火柴棒擺出第n個(gè)圖形,求n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】雷達(dá)二維平面定位的主要原理是:測(cè)量目標(biāo)的兩個(gè)信息―距離和角度,目標(biāo)的表示方法為,其中,m表示目標(biāo)與探測(cè)器的距離;表示以正東為始邊,逆時(shí)針旋轉(zhuǎn)后的角度.如圖,雷達(dá)探測(cè)器顯示在點(diǎn)A,B,C處有目標(biāo)出現(xiàn),其中,目標(biāo)A的位置表示為,目標(biāo)C的位置表示為.用這種方法表示目標(biāo)B的位置,正確的是( )
A. (-4, 150°) B. (4, 150°) C. (-2, 150°) D. (2, 150°)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com