【題目】如圖所示,點E在△ABC外部,點D在BC邊上,DE交AC于F,若∠1=∠2,∠C=∠E, AE=AC,
(1)求證: △ABC≌△ADE;
(2) 求證:∠2=∠3;
(3)當∠2=90°時,判斷△ABD的形狀,并說明理由.
科目:初中數(shù)學 來源: 題型:
【題目】已知△A1B1C1是由△ABC經(jīng)過平移得到的,其中,A、B、C三點的對應點分別是A1、B1、C1,它們在平面直角坐標系中的坐標如下表所示:
△ABC | A(a,0) | B(3,0) | C(5,5) |
△A1B1C1 | A1(﹣3,2) | B1(﹣1,b) | C1(c,7) |
(1)觀察表中各對應點坐標的變化,并填空:a= ,b= ,c= ;
(2)在如圖的平面直角坐標系中畫出△ABC及△A1B1C1;
(3)△A1B1C1的面積是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】母親節(jié)前夕,某淘寶店主從廠家購進A、B兩種禮盒,已知A、B兩種禮盒的單價比為2:3,單價和為200元.
(1)求A、B兩種禮盒的單價分別是多少元?
(2)該店主購進這兩種禮盒恰好用去9600元,且購進A種禮盒最多36個,B種禮盒的數(shù)量不超過A種禮盒數(shù)量的2倍,共有幾種進貨方案?
(3)根據(jù)市場行情,銷售一個A種禮盒可獲利10元,銷售一個B種禮盒可獲利18元.為奉獻愛心,該店主決定每售出一個B種禮盒,為愛心公益基金捐款m元,每個A種禮盒的利潤不變,在(2)的條件下,要使禮盒全部售出后所有方案獲利相同,m值是多少?此時店主獲利多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點D,E分別在線段AB, AC上,CD與BE相交于O點,已知AD=AE,現(xiàn)添加以下哪個條件仍不能判定△ABE≌△ACD( )
A. BD= CEB. ∠B=∠CC. BE=CDD. AB=AC
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的邊長為a, P為正方形邊上一動點,運動路線是A-D-C-B-A,設P點經(jīng) 過的路程為x,以點A,P,D為頂點的三角形的面積是y,圖象反映了y與x的關系,當時,x=_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某水果批發(fā)商銷售每箱進價為40元的蘋果,物價部門規(guī)定每箱售價不得高于55元,市場調查發(fā)現(xiàn),若每箱以50元的價格調查,平均每天銷售90箱,價格每提高1元,平均每天少銷售3箱.
(1)求平均每天銷售量y(箱)與銷售價x(元/箱)之間的函數(shù)關系式.
(2)求該批發(fā)商平均每天的銷售利潤w(元)與銷售價x(元/箱)之間的函數(shù)關系式.
(3)當每箱蘋果的銷售價為多少元時,可以獲得最大利潤?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖所示,直線,另一直線交于,交于,且,點為直線上一動點,點為直線上一動點,且.
()如圖,當點在點右邊且點在點左邊時,的平分線交的平分線于點,求的度數(shù);
()如圖,當點在點右邊且點在點右邊時,的平分線交的平分線于點,求的度數(shù);
()當點在點左邊且點在點左邊時,的平分線交的平分線所在直線交于點,請直接寫出的度數(shù),不說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關于x,y的方程組,則下列結論中正確的是( )
①當a=5時,方程組的解是;
②當x,y的值互為相反數(shù)時,a=20;
③不存在一個實數(shù)a使得x=y;
④若,則a=2.
A. ①②③④ B. ②③ C. ②③④ D. ②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某鐵件加工廠用如圖1的長方形和正方形鐵片(長方形的寬與正方形的邊長相等)加工成如圖2的豎式與橫式兩種無蓋的長方體鐵容器.(加工時接縫材料不計)
(1)如果加工豎式鐵容器與橫式鐵容器各1個,則共需要長方形鐵片 張,正方形鐵片 張.
(2)現(xiàn)有長方形鐵片2014張,正方形鐵片1176張,如果加工成這兩種鐵容器,剛好鐵片全部用完,那么加工的豎式鐵容器、橫式鐵容器各有多少個?
(3)把長方體鐵容器加蓋可以加工成為鐵盒.現(xiàn)用35張鐵板做成與如圖相同的長方形鐵片和正方形鐵片,已知每張鐵板可做成3個長方形鐵片或4個正方形鐵片,也可以將一張鐵板做成1個長方形鐵片和2個正方形鐵片.該如何充分利用這些鐵板加工成鐵盒,最多可以加工成多少個鐵盒?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com