【題目】如圖,已知BDC+EFC180°,DEFB

(1)DEBC是否平行,請說明理由;

(2)D、EF分別為AB、AC、DC中點,連接BF,若四邊形 ADEF

【答案】(1)見解析(216

【解析】

1)由BDC+EFC=180°和∠EFC+DFE=180°得到∠BDC=DFE,根據(jù)平行線的判定得ABEF,則∠ADE=DEF,而∠DEF=B,所以∠ADE=B,于是可判斷DEBC.

2)由EAC的中點,根據(jù)三角形面積公式得到SADE=SCDE=SADC,再由FDC的中點得SDEF=SCEF=SDEC,而S四邊形ADFE=6,則SADE+SEDC=6,可計算出SADE=4,則SADC=8,然后利用DAB的中點,根據(jù)SABC=2SADC進行計算即可.

證明:∵∠BDC+EFC=180°
而∠EFC+DFE=180°,
∴∠BDC=DFE,
ABEF,
∴∠ADE=DEF,
∵∠DEF=B,
∴∠ADE=B
DEBC.

(2) 解:∵EAC的中點,
SADE=SCDE=SADC,
FDC的中點,
SDEF=SCEF=SDEC,
S四邊形ADFE=6,
SADE+SEDC=6,
SADE=6
SADE=4,
SADC=2×4=8,
DAB的中點,
SABC=2SADC=2×8=16

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠MON=60°,作邊長為1的正六邊形A1B1C1D1E1F1 , 邊A1B1、F1E1分別在射線OM、ON上,邊C1D1所在的直線分別交OM、ON于點A2、F2 , 以A2F2為邊作正六邊形A2B2C2D2E2F2 , 邊C2D2所在的直線分別交OM、ON于點A3、F3 , 再以A3F3為邊作正六邊形A3B3C3D3E3F3 , …,依此規(guī)律,經(jīng)第n次作圖后,點Bn到ON的距離是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線AB,CD相交于點O,OMAB

1)∠AOC的鄰補角為    (寫出一個即可);

2)若∠1=∠2,判斷ONCD的位置關(guān)系,并說明理由;

3)若∠1=BOC,求∠MOD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義符號min{a,b,c}表示a、b、c三個數(shù)中的最小值,如min{1,﹣2,3}=﹣2,min{0,55}0

1)根據(jù)題意填空:min   ;

2)試求函數(shù)ymin{2,x+1,﹣3x+11}的解析式;

3)關(guān)于x的方程﹣x+mmin{2x+1,﹣3x+11}有解,試求常數(shù)m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,每個小正方形的邊長為1,在方格紙內(nèi)將ABC經(jīng)過一次平移后得到A'B'C',圖中標出了點B的對應點B'.利用網(wǎng)格點和三角板畫圖:

1)補全A'B'C'根據(jù)下列條件;

2)畫出ABCAB邊上的中線CD

3)畫出ABCBC邊上的高線AE;

4)線段A'B'AB的關(guān)系是    A'B'C'的面積為    

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知某品牌的飲料有大瓶裝與小瓶裝之分某超市花了3800元購進一批該品牌的飲料共1000,其中大瓶和小瓶飲料的進價及售價如下表所示:

大瓶

小瓶

進價(/)

5

2

售價(/)

7

3

(1)該超市購進大瓶和小瓶飲料各多少瓶?

(2)在大瓶飲料售出200小瓶飲料售出100瓶后商家決定將剩下的小瓶飲料的售價降低0.5元銷售,并把其中一定數(shù)量的小瓶飲料作為贈品在顧客一次性購買大瓶飲料時每滿2瓶就送1瓶小瓶飲料,送完即止超市要使這批飲料售完后獲得的利潤不低于1250那么小瓶飲料作為贈品最多只能送出多少瓶?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果∠α和∠β互補,且∠α>β,則下列表示∠β的余角的式子中:①90°﹣β;②∠α﹣90°α+β);α﹣β).正確的有( 。

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,AEBC,F(xiàn)GBC,1=2,D=3+60°,CBD=70°.

(1)求證:ABCD;

(2)求∠C的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,∠C=90°,AC=6,BC=8,動點P從A點出發(fā),以1cm/s的速度,沿A﹣C﹣B向B點運動,同時,動點Q從C點出發(fā),以2cm/s的速度,沿C﹣B﹣A向A點運動,當其中一點運動到終點時,兩點同時停止運動.設(shè)運動時間為t秒,當t=秒時,△PCQ的面積等于8cm2

查看答案和解析>>

同步練習冊答案