如圖,∠BAC=45º,AD⊥BC于點(diǎn)D,且BD=3,CD=2,則AD的長為        
6.

試題分析:如 圖,過B作BE⊥AC,垂足為E交AD于F,由∠BAC=45°可以得到BE=AE,再根據(jù)已知條件可以證明△AFE≌△BCE,可以得到 AF=BC=10,而∠FBD=∠DAC,又∠BDF=∠ADC=90°,由此可以證明△BDF∽△ADC,所以FD:DC=BD:AD,設(shè)FD長為x,則可建立關(guān)于x的方程,解方程即可求出FD,AD的長.
試題解析:如圖,過B作BE⊥AC,垂足為E交AD于F

∵∠BAC=45°
∴BE=AE,
∵∠C+∠EBC=90°,∠C+∠EAF=90°,
∴∠EAF=∠EBC,
在△AFE與△BCE中,

∴△AFE≌△BCE(ASA)
∴AF=BC=BD+DC=10,∠FBD=∠DAC,
又∵∠BDF=∠ADC=90°
∴△BDF∽△ADC
∴FD:DC=BD:AD
設(shè)FD長為x
即x:2=3:(x+5)
解得x=1
即FD=1
∴AD=AF+FD=5+1=6.
考點(diǎn): 1.相似三角形的判定與性質(zhì);2.解一元二次方程-公式法;3.全等三角形的判定與性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

平面直角坐標(biāo)中,已知點(diǎn)O(0,0),A(0,2),B(1,0),點(diǎn)P是反比例函數(shù)y=﹣圖象上的一個動點(diǎn),過點(diǎn)P作PQ⊥x軸,垂足為Q.若以點(diǎn)O、P、Q為頂點(diǎn)的三角形與△OAB相似,則相應(yīng)的點(diǎn)P共有(  )
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,△ABC中,點(diǎn)D在邊AB上,滿足∠ACD=∠ABC,若AC=2,AD=1,則DB=          

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知在△ABC中,點(diǎn)D、E分別在邊AB和AC上,DE∥BC,;(2)求作向量(不要求寫作法,但要指出所作圖中表示結(jié)論的向量)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

有一副直角三角板,在三角板ABC中,∠BAC=90°,AB=AC=6,在三角板DEF中,∠FDE=90°,DF=4,DE=4,將這副直角三角板按如圖(1)所示位置擺放,點(diǎn)B與點(diǎn)F重合,直角邊BA與FD在同一條直線上.現(xiàn)固定三角板ABC,將三角板DEF沿射線BA方向平行移動,當(dāng)點(diǎn)F運(yùn)動到點(diǎn)A時停止運(yùn)動.

(1)如圖(2),當(dāng)三角板DEF運(yùn)動到點(diǎn)D與點(diǎn)A重合時,設(shè)EF與BC交于點(diǎn)M,則∠EMC=     度;

(2)如圖(3),在三角板DEF運(yùn)動過程中,當(dāng)EF經(jīng)過點(diǎn)C時,求FC的長;

(3)在三角板DEF運(yùn)動過程中,當(dāng)D在BA的延長線上時,設(shè)BF=x,兩塊三角板重迭部分的面積為y.求y與x的函數(shù)關(guān)系式,并求出對應(yīng)的x取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在平行四邊形ABCD中,AC與BD交于點(diǎn)O,E為OD的中點(diǎn),連接AE并延長交DC于點(diǎn)F,則DF∶FC=
A.1∶4B.1∶3C.2∶3D.1∶2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

用放大鏡將圖形放大,應(yīng)該屬于(    )
A.平移變換;B.相似變換;C.對稱變換;D.旋轉(zhuǎn)變換.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知點(diǎn)P是邊長為4的正方形ABCD內(nèi)一點(diǎn),且PB="3" , BF⊥BP,垂足是點(diǎn)B, 若在射線BF上找一點(diǎn)M,使以點(diǎn)B, M, C為頂點(diǎn)的三角形與△ABP相似,則BM為___________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在△中,,則______.

查看答案和解析>>

同步練習(xí)冊答案