在平面直角坐標(biāo)系xOy中,一次函數(shù)y=-x+3的圖象與x軸交于點A,與y軸交于點B,動點P從點B出發(fā)沿BA向終點A運(yùn)動,同時動點Q從點O出發(fā)沿OB向點B運(yùn)動,到達(dá)點B后立刻以原來的速度沿BO返回.點P,Q運(yùn)動速度均為每秒1個單位長度,當(dāng)點P到達(dá)點A時停止運(yùn)動,點Q也同時停止.連結(jié)PQ,設(shè)運(yùn)動時間為t(t>0)秒.
(1)求點P的坐標(biāo)(用含t的代數(shù)式表示);
(2)當(dāng)點Q從點O向點B運(yùn)動時(未到達(dá)點B),是否存在實數(shù)t,使得△BPQ的面積大于17若存在,請求出t的取值范圍;若不存在,請說明理由;
(3)伴隨著P,Q兩點的運(yùn)動,線段PQ的垂直平分線為直線l.是否存在t的值,使得直線l經(jīng)過點O?若存在,請求出所有t的值;若不存在,請說明理由.
(1)P(,﹣x+3);
(2)不存在實數(shù)t,使得△BPQ的面積大于17;
(3),t=或時,O在l的垂直平分線上.
解析試題分析:(1)表示邊長首要就是表示出來,根據(jù)函數(shù)性質(zhì)及線段成比例等性質(zhì)易表示出,PD,PC的長,即得坐標(biāo);
(2)討論面積一般是計算底和高,然后表示出面積解析式,進(jìn)而根據(jù)二次函數(shù)性質(zhì)討論最值或范圍.而第一問求得OA=3,OB=4,易得S△AOB僅為6,而S△BQP≤S△AOB,所以定不存在實數(shù)t,使得面積大于17;
(3)垂直平分線上的點到兩邊距離相等,利用這個性質(zhì),我們只要表示出OP,和OQ即可.但討論時注意Q點的運(yùn)動時個往返的過程,要有兩種情形.
試題解析:(1)如圖,過點P作PC⊥OA于C,PD⊥OB于D.
∵y=﹣x+3的圖象與x軸交于點A,與y軸交于點B
∴A(4,0),B(0,3),
在Rt△BDP中,
∵OB=3,OA=4,
∴AB=5.
∵BP∥OA,
∴,
∵BP=t,
∴,
∴.
∵由點P過AB,
∴將x=代入y=﹣x+3,得y=﹣x+3,
∴P(,﹣x+3);
(2)不存在實數(shù)t,使得△BPQ的面積大于17.
∵Q、P在OB、OA上運(yùn)動,
∴S△BQP≤S△AOB.
∵S△AOB=OA·OB==6,
∴S△BQP≤6<17,
∴不存在實數(shù)t,使得△BPQ的面積大于17;
(3)∵P(,﹣x+3),
∴OC=,PC=﹣x+3,
∴OP2=()2+(﹣x+3)2,
∵O在l的垂直平分線上,
∴OP=OQ.
①當(dāng)0<t≤3時,OP=t,則t2=()2+(﹣t+3)2,解得 t=,符合要求.
②當(dāng)3<t≤5時,
∵BQ=t﹣3,
∴OQ=3﹣(t﹣3)=6﹣t,
∴(6﹣t)2=()2+(﹣t+3)2
解得 t=,符合要求.
綜上所述,t=或時,O在l的垂直平分線上.
考點:一次函數(shù)綜合題.
科目:初中數(shù)學(xué) 來源: 題型:解答題
畫出函數(shù)y=﹣x+1的圖象,結(jié)合圖象,回答下列問題.
在函數(shù)y=﹣x+1的圖象中:
(1)畫出函數(shù)圖象并寫出與x軸的交點坐標(biāo)是 _________ ;
(2)隨著x的增大,y將 _________ (填“增大”或“減小”);
(3)當(dāng)y取何值時,x<0? _________
(4)把它的圖象向下平移2個單位長度則得到的新的一次函數(shù)解析式是 _________ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=ax+b的圖象與x軸相交于點A(-2,0),與y軸交于點C,與反比例函數(shù)在第一象限內(nèi)的圖象交于點B(m,n),連結(jié)OB.若S△AOB=6,S△BOC=2.
(1)求一次函數(shù)的表達(dá)式;
(2)求反比例函數(shù)的表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標(biāo)系中,點O坐標(biāo)原點,直線l分別交x軸、y軸于A,B兩點,OA<OB,且OA、OB的長分別是一元二次方程的兩根.
(1)求直線AB的函數(shù)表達(dá)式;
(2)點P是y軸上的點,點Q第一象限內(nèi)的點.若以A、B、P、Q為頂點的四邊形是菱形,請直接寫出Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
無論k取任何實數(shù),對于直線都會經(jīng)過一個固定的點,我們就稱直線恒過定點.
(1)無論取任何實數(shù),拋物線恒過定點,直接寫出定點A的坐標(biāo);
(2)已知△ABC的一個頂點是(1)中的定點,且∠B,∠C的角平分線分別是y軸和直線,求邊BC所在直線的表達(dá)式;
(3)求△ABC內(nèi)切圓的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
在購買某場足球賽門票時,設(shè)購買門票數(shù)為x(張),總費用為y(元).現(xiàn)有兩種購買方案:
方案一:若單位贊助廣告費10000元,則該單位所購門票的價格為每張60元;
(總費用=廣告贊助費+門票費)
方案二:購買門票方式如圖所示.
解答下列問題:
(1)方案一中,y與x的函數(shù)關(guān)系式為 ;
方案二中,當(dāng)0≤x≤100時,y與x的函數(shù)關(guān)系式為 ,
當(dāng)x>100時,y與x的函數(shù)關(guān)系式為 ;
(2)如果購買本場足球賽門票超過100張,你將選擇哪一種方案,使總費用最省?請說明理由;
(3)甲、乙兩單位分別采用方案一、方案二購買本場足球賽門票共700張,花去總費用計58000元,求甲、乙兩單位各購買門票多少張.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
為了抓住世界杯商機(jī),某商店決定購進(jìn)A、B兩種世界杯紀(jì)念品.若購進(jìn)A種紀(jì)念品10件,B種紀(jì)念品5件,需要1 000元;若購進(jìn)A種紀(jì)念品5件,B種紀(jì)念品3件,需要550元.
(1)求購進(jìn)A、B兩種紀(jì)念品每件各需多少元?
(2)若該商店決定拿出1萬元全部用來購進(jìn)這兩種紀(jì)念品,考慮市場需求,要求購進(jìn)A種紀(jì)念品的數(shù)量不少于B種紀(jì)念品數(shù)量的6倍,且不超過B種紀(jì)念品數(shù)量的8倍,那么該商店共有幾種進(jìn)貨方案?
(3)若銷售每件A種紀(jì)念品可獲利潤20元,每件B種紀(jì)念品可獲利潤30元,在第(2)問的各種進(jìn)貨方案中,哪一種方案獲利最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
溫州享有“中國筆都”之稱,其產(chǎn)品暢銷全球,某制筆企業(yè)欲將n件產(chǎn)品運(yùn)往A,B,C三地銷售,要求運(yùn)往C地的件數(shù)是運(yùn)往A地件數(shù)的2倍,各地的運(yùn)費如圖所示.設(shè)安排x件產(chǎn)品運(yùn)往A地.
(1)當(dāng)n=200時,
①根據(jù)信息填表:
| A地 | B地 | C地 | 合計 |
產(chǎn)品件數(shù)(件) | x | | 2x | 200 |
運(yùn)費(元) | 30x | | | |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,A(1,0),B(4,0),M(5,3).動點P從點A出發(fā),沿x軸以每秒1個單位長的速度向右移動,且過點P的直線l:y=-x+b也隨之移動.設(shè)移動時間為t秒.
(1)當(dāng)t=1時,求l的解析式;
(2)若l與線段BM有公共點,確定t的取值范圍;
(3)直接寫出t為何值時,點M關(guān)于l的對稱點落在y軸上.如不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com