【題目】在矩形ABCO中,O為坐標(biāo)原點(diǎn),A在y軸上,C在x軸上,B的坐標(biāo)為(8,6),P是線段BC上動(dòng)點(diǎn),點(diǎn)D是直線y=2x﹣6上第一象限的點(diǎn),若△APD是等腰Rt△,則點(diǎn)D的坐標(biāo)為 .
【答案】(4,2)或( , )或( , )
【解析】解:①如圖1中,當(dāng)∠ADP=90°,D在AB下方,
設(shè)點(diǎn)D坐標(biāo)(a,2a﹣6),過(guò)點(diǎn)D作EF∥OC交OA于E,交BC于F,
則OE=2a﹣6,AE=AO﹣OE=12﹣2a,
在△ADE和△DPF中,
∴△ADE≌△DPF,
∴AE=DF=12﹣2a,
∵EF=OC=8,
∴a+12﹣2a=8,
∴a=4.
此時(shí)點(diǎn)D坐標(biāo)(4,2).②如圖2中,當(dāng)∠ADP=90°,D在AB上方,
設(shè)點(diǎn)D坐標(biāo)(a,2a﹣6),過(guò)點(diǎn)D作EF∥OC交OA于E,交CB的延長(zhǎng)線于F,
則OE=2a﹣6,AE=OE﹣OA=2a﹣12,
由△ADE≌△DPF,得到DF=AE=2a﹣12,
∵EF=8,
∴a+2a﹣12=8,
∴a= ,
此時(shí)點(diǎn)D坐標(biāo)( , ).③如圖3中,當(dāng)∠APD=90°時(shí),
設(shè)點(diǎn)D坐標(biāo)(a,2a﹣6),作DE⊥CB的延長(zhǎng)線于E.同理可知△ABP≌△EPD,
∴AB=EP=8,PB=DE=a﹣8,
∴EB=2a﹣6﹣6=8﹣(a﹣8),
∴a= ,
此時(shí)點(diǎn)D坐標(biāo)( , ).
當(dāng)∠DAP=90°時(shí),此時(shí)P在BC的延長(zhǎng)線上,
∴點(diǎn)D坐標(biāo)為(4,2)或( , )或( , ).
所以答案是(4,2)或( , )或( , ).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】春節(jié)期間,某商場(chǎng)計(jì)劃購(gòu)進(jìn)甲、乙兩種商品,已知購(gòu)進(jìn)甲商品2件和乙商品3件共需270元;購(gòu)進(jìn)甲商品3件和乙商品2件共需230元.
(1)求甲、乙兩種商品每件的進(jìn)價(jià)分別是多少元?
(2)商場(chǎng)決定甲商品以每件40元出售,乙商品以每件90元出售,為滿足市場(chǎng)需求,需購(gòu)進(jìn)甲、乙兩種商品共100件,且甲種商品的數(shù)量不少于乙種商品數(shù)量的4倍,請(qǐng)你求出獲利最大的進(jìn)貨方案,并求出最大利潤(rùn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,購(gòu)買(mǎi)一種蘋(píng)果,所付款金額y(元)與購(gòu)買(mǎi)量x(千克)之間的函數(shù)圖象由線段OA和射線AB組成,則一次購(gòu)買(mǎi)3千克這種蘋(píng)果比分三次每次購(gòu)買(mǎi)1千克這種蘋(píng)果可節(jié)省( )
A.1元
B.2元
C.3元
D.4元
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)實(shí)施的“一帶一路”戰(zhàn)略方針,惠及沿途各國(guó).中歐班列也已融入其中.從我國(guó)重慶開(kāi)往德國(guó)的杜伊斯堡班列,全程約11025千米.同樣的貨物,若用輪船運(yùn)輸,水路路程是鐵路路程的1.6倍,水路所用天數(shù)是鐵路所用天數(shù)的3倍,列車(chē)平均日速(平均每日行駛的千米數(shù))是輪船平均日速的2倍少49千米.分別求出列車(chē)及輪船的平均日速.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a+b=1,ab=-1.設(shè)
(1)計(jì)算S2;
(2)請(qǐng)閱讀下面計(jì)算S3的過(guò)程:
=
=
=
∵a+b=1,ab=-1,
∴_______.
你讀懂了嗎?請(qǐng)你先填空完成(2)中S3的計(jì)算結(jié)果;再計(jì)算S4;
(3)猜想并寫(xiě)出, , 三者之間的數(shù)量關(guān)系(不要求證明,且n是不小于2的自然數(shù)),根據(jù)得出的數(shù)量關(guān)系計(jì)算S3.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC=5,BC=6,點(diǎn)D為AB邊上的一動(dòng)點(diǎn)(D不與A、B重合),過(guò)D作DE∥BC,交AC于點(diǎn)E.把△ADE沿直線DE折疊,點(diǎn)A落在點(diǎn)A′處.連接BA′,設(shè)AD=x,△ADE的邊DE上的高為y.
(1)求出y與x的函數(shù)關(guān)系式;
(2)若以點(diǎn)A′、B、D為頂點(diǎn)的三角形與△ABC 相似,求x的值;
(3)當(dāng)x取何值時(shí),△A′DB是直角三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB為⊙O的直徑,E是⊙O外一點(diǎn),過(guò)點(diǎn)E作⊙O的兩條切線ED、EB,切點(diǎn)分別為點(diǎn)D,B,連接AD并延長(zhǎng)交BE延長(zhǎng)線于點(diǎn)C,連接OE.
(1)試判斷OE與AC的關(guān)系,并說(shuō)明理由;
(2)填空: ①當(dāng)∠BAC=時(shí),四邊形ODEB是正方形.
②當(dāng)∠BAC=30°時(shí), 的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,連接BD,點(diǎn)E,F(xiàn)分別在AB和CD上,連接CE,AF,CE與AF分別交B于點(diǎn)N,M.已知∠AMD=∠BNC.
(1)若∠ECD=60°,求∠AFC的度數(shù);
(2)若∠ECD=∠BAF,試判斷∠ABD與∠BDC之間的數(shù)量關(guān)系,并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com