【題目】如圖,矩形紙片,將和分別沿和折疊(),點和點都與點重合;再將沿折疊,點落在線段上點處.
(1)判斷和中有哪幾對相似三角形? (不需說明理由)
(2)如果,求的長.
【答案】(1)與與與三對相似三角形;(2).
【解析】
(1)由矩形的性質(zhì)得∠A=∠B=∠C=90°,由折疊的性質(zhì)和等角的余角相等,可得∠BPQ=∠AMP=∠DQC,所以△AMP∽△BPQ∽△CQD;
(2)先證明MD=MQ,然后根據(jù)sin∠DMF,設(shè)DF=3x,MD=5x,表示出AP、BP、BQ,再根據(jù)△AMP∽△BPQ,列出比例式解方程求解即可.
解:(1)△AMP∽△BPQ∽△CQD,理由如下:
∵四邊形ABCD是矩形,
∴∠A=∠B=∠C=90°,
根據(jù)折疊的性質(zhì)可知:∠APM=∠EPM,∠EPQ=∠BPQ,
∴∠APM+∠BPQ=∠EPM+∠EPQ=90°,
∵∠APM+∠AMP=90°,
∴∠BPQ=∠AMP,
∴△AMP∽△BPQ,
同理:△BPQ∽△CQD,
根據(jù)相似的傳遞性,△AMP∽△CQD;
故與與與三對相似三角形;
(2)∵AD∥BC,∴∠DQC=∠MDQ,
根據(jù)折疊的性質(zhì)可知:∠DQC=∠DQM,
∴∠MDQ=∠DQM,∴MD=MQ,
∵AM=ME,BQ=EQ,∴BQ=MQ-ME=MD-AM,
∵sin∠DMF=,∴設(shè)DF=3x,MD=5x,
∴BP=PA=PE=,BQ=5x-1,
∵△AMP∽△BPQ,∴,
,
解得:x=(舍)或x=2,
∴AB=3x=6.
科目:初中數(shù)學 來源: 題型:
【題目】解下列方程
(1)3(x﹣2)2﹣12=0
(2)(x﹣1)(x+3)=﹣4
(3)x2﹣4x+1=0
(4)(2x﹣1)=2(1﹣2x)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】矩形中,AB=8,BC=6,過對角線中點的直線分別交,邊于點,.
(1)求證:四邊形是平行四邊形;
(2)當四邊形是菱形時,求的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在中,,邊AB的垂直平分線交邊BC于點D,邊AC的垂直平分線交邊BC于點E,連結(jié)AD,AE,則的度數(shù)為______用含的代數(shù)式表示
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線y=x2+bx+c過點A(3, 0)、點B(0, 3).點M(m, 0)在線段OA上(與點A、O不重合),過點M作x軸的垂線與線段AB交于點P,與拋物線交于點Q,聯(lián)結(jié)BQ.
(1)求拋物線表達式;
(2)聯(lián)結(jié)OP,當∠BOP=∠PBQ時,求PQ的長度;
(3)當△PBQ為等腰三角形時,求m的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,是一張盾構(gòu)隧道斷面結(jié)構(gòu)圖.隧道內(nèi)部為以O為圓心,AB為直徑的圓.隧道內(nèi)部共分為三層,上層為排煙道,中間為行車隧道,下層為服務(wù)層.點A到頂棚的距離為1.6m,頂棚到路面的距離是6.4m,點B到路面的距離為4.0m.請求出路面CD的寬度.(精確到0.1m)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在正方形ABCD中,G為CD邊中點,連接AG并延長交BC邊的延長線于E點,對角線BD交AG于F點.已知FG=2,則線段AE的長度為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,菱形OABC的頂點O在坐標原點,頂點A在x軸上,∠B=120°,OA=4,將菱形OABC繞原點順時針旋轉(zhuǎn)105°至OA′B′C′的位置,則點B′的坐標為( )
A. (2,﹣2)B. (,-)C. (2,﹣2)D. (,-)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中,AB∥CD,∠B=90°,AB=1,CD=2,BC=m,點P是邊BC上一動點,若△PAB與△PCD相似,且滿足條件的點P恰有2個,則m的值為_______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com