已知直線y=x+4與x軸、y軸分別交于A、B兩點,∠ABC=60°,BC與x軸交于點C.

(1)試確定直線BC的解析式.

(2)若動點P從A點出發(fā)沿AC向點C運動(不與A、C重合),同時動點Q從C點出發(fā)沿CBA向點A運動(不與C、A重合),動點P的運動速度是每秒1個單位長度,動點Q的運動速度是每秒2個單位長度.設△APQ的面積為S,P點的運動時間為t秒,求S與t的函數(shù)關系式,并寫出自變量的取值范圍.

(3)在(2)的條件下,當△APQ的面積最大時,y軸上有一點M,平面內是否存在一點N,使以A、Q、M、N為頂點的四邊形為菱形?若存在,請直接寫出N點的坐標;若不存在,請說明理由.

答案:
解析:

  解答:解:(1)由已知得A點坐標(-4,0),B點坐標(0,4),

  ∵OA=4OB=4,

  ∴∠BAO=60°,

  ∵∠ABC=60°,

  ∴△ABC是等邊三角形,

  ∵OC=OA=4,

  ∴C點坐標(4,0),

  設直線BC解析式為y=kx﹢b,

  ,

  ∴,

  ∴直線BC的解析式為y=-x+4;(2分)

  (2)當P點在AO之間運動時,作QH⊥x軸.

  ∵

  ∴,

  ∴QH=t

  ∴S△APQAP·QH=t=t2(0<t≤4),(2分)

  同理可得S△APQt·(8t)=-(4≤t<8);(2分)

  (3)存在,(4,0),(-4,8)(-4,-8)(-4,).(4分)

  分析:(1)由已知得A點坐標,通過OA,OB長度關系,求得角BAO為60度,即能求得點C坐標,設直線BC代入BC兩點即求得.

  (2)當P點在AO之間運動時,作QH⊥x軸.再求得QH,從而求得三角形APQ的面積.

  (3)由(2)所求可知,是存在的,寫出點的坐標.

  點評:本題考查了一次函數(shù)的運用,考查了一次函數(shù)與直線交點坐標,從而求得AB的長度,由△ABC是等邊三角形,從而求得.


練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

已知直線y=2x+8與x軸和y軸的交點的坐標分別是_______、_______;與兩條坐標

軸圍成的三角形的面積是__________.

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知直線y=2x+8與x軸和y軸的交點的坐標分別是_______、_______;與兩條坐標
軸圍成的三角形的面積是__________.

查看答案和解析>>

科目:初中數(shù)學 來源:2012學年人教版八年級寒假作業(yè)天天練習數(shù)學一次函數(shù)單元卷 題型:單選題

已知直線y=2x+8與x軸和y軸的交點的坐標分別是_______、_______;與兩條坐標
軸圍成的三角形的面積是__________.學科網

查看答案和解析>>

科目:初中數(shù)學 來源:2013屆河南省新密市興華公學九年級3月第一次摸擬考試數(shù)學試卷(帶解析) 題型:填空題

如圖,已知直線y1xmy2kx-1相交于點P(-1,1),則關于x的不等式xmkx-1的解集的是_________________.

查看答案和解析>>

科目:初中數(shù)學 來源:2012學年人教版八年級寒假作業(yè)天天練習數(shù)學一次函數(shù)單元卷 題型:填空題

已知直線y=2x+8與x軸和y軸的交點的坐標分別是_______、_______;與兩條坐標

軸圍成的三角形的面積是__________.

 

查看答案和解析>>

同步練習冊答案