【題目】△ABC在平面直角坐標(biāo)系中的位置如圖所示(坐標(biāo)系內(nèi)正方形網(wǎng)格的單位長度為1):
(1)在網(wǎng)格內(nèi)畫出和△ABC以點(diǎn)O為位似中心的位似圖形△A1B1C1,使△A1B1C1和△ABC的位似比為2:1且△A1B1C1位于y軸左側(cè);
(2)分別寫出A1、B1、C1三個(gè)點(diǎn)的坐標(biāo):A1 、B1 、C1 ;
(3)求△A1B1C1的面積為 .
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A、B兩點(diǎn)分別在x軸、y軸上,OA=3,OB=4,連結(jié)AB.點(diǎn)P在平面內(nèi),若以點(diǎn)P、A、B為頂點(diǎn)的三角形與△AOB全等(點(diǎn)P與點(diǎn)O不重合),則滿足條件的點(diǎn)P有_______個(gè).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD是平行四邊形,從下列條件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中,再選兩個(gè)做為補(bǔ)充,使ABCD變?yōu)檎叫危旅嫠姆N組合,錯(cuò)誤的是( )
A.①②B.①③C.②③D.②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司員工分別住在三個(gè)住宅區(qū),區(qū)有人,區(qū)有人,區(qū)有人.三個(gè)區(qū)在一條直線上,位置如圖所示.公司的接送打算在此間只設(shè)一個(gè)停靠點(diǎn),要使所有員工步行到停靠點(diǎn)的路程總和最少,那么停靠點(diǎn)的位置應(yīng)在( )
A.區(qū)B.區(qū)C.區(qū)D.不確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在中,是直角,,、分別是、的平分線,、相交于點(diǎn).
(1)求出的度數(shù);
(2)判斷與之間的數(shù)量關(guān)系并說明理由.(提示:在上截取,連接.)
(3)如圖2,在△中,如果不是直角,而(1)中的其它條件不變,試判斷線段、與之間的數(shù)量關(guān)系并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,CD⊥AB于D.已知AB=13,CD=6,則Rt△ABC的周長為( 。
A. 13+5 B. 13+13 C. 13+9 D. 18
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了探索代數(shù)式的最小值,
小張巧妙的運(yùn)用了數(shù)學(xué)思想.具體方法是這樣的:如圖,C為線段BD上一動(dòng)點(diǎn),分別過點(diǎn)B、D作,連結(jié)AC、EC.已知AB=1,DE=5,BD=8,設(shè)BC=x.則,則問題即轉(zhuǎn)化成求AC+CE的最小值.
(1)我們知道當(dāng)A、C、E在同一直線上時(shí),AC+CE的值最小,于是可求得的最小值等于 ,此時(shí)x= ;
(2)題中“小張巧妙的運(yùn)用了數(shù)學(xué)思想”是指哪種主要的數(shù)學(xué)思想;
(選填:函數(shù)思想,分類討論思想、類比思想、數(shù)形結(jié)合思想)
(3)請你根據(jù)上述的方法和結(jié)論,試構(gòu)圖求出代數(shù)式的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次數(shù)學(xué)活動(dòng)課上,老師帶領(lǐng)同學(xué)們區(qū)測量一座古塔CD的高度,他們首先在A處安置測量器,測得塔頂C的仰角∠CFE=30°,然后往塔的方向前進(jìn)50米到達(dá)B處,此時(shí)測得塔頂C的仰角∠CGE=60°,已知測量器高1.5米,請你根據(jù)以上數(shù)據(jù)計(jì)算出古塔CD 的高度,(≈1.73,≈1.41)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)閱讀理解:如圖1,在中,若,.求邊上的中線的取值范圍.小聰同學(xué)是這樣思考的:延長至,使,連結(jié).利用全等將邊轉(zhuǎn)化到,在中利用三角形三邊關(guān)系即可求出中線的取值范圍.在這個(gè)過程中小聰同學(xué)證三角形全等用到的判定方法是__________;中線的取值范圍是__________.
(2)問題解決:如圖2,在中,點(diǎn)是的中點(diǎn),點(diǎn)在邊上,點(diǎn)在邊上,若.求證:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com