【題目】如圖所示,A1,0)、點(diǎn)By軸上,將三角形OAB沿x軸負(fù)方向平移,平移后的圖形為三角形DEC,且點(diǎn)C的坐標(biāo)為(﹣3,2).

1)直接寫出點(diǎn)E的坐標(biāo)      ;

2)在四邊形ABCD中,點(diǎn)P從點(diǎn)B出發(fā),沿“BC→CD”移動.若點(diǎn)P的速度為每秒1個(gè)單位長度,運(yùn)動時(shí)間為t秒,回答下列問題:

當(dāng)t=      秒時(shí),點(diǎn)P的橫坐標(biāo)與縱坐標(biāo)互為相反數(shù);

求點(diǎn)P在運(yùn)動過程中的坐標(biāo),(用含t的式子表示,寫出過程);

當(dāng)點(diǎn)P運(yùn)動到CD上時(shí),設(shè)∠CBP=x°,∠PAD=y°∠BPA=z°,試問 x,yz之間的數(shù)量關(guān)系能否確定?若能,請用含xy的式子表示z,寫出過程;若不能,說明理由.

【答案】1)(-20);(2)①t=2;②當(dāng)點(diǎn)P在線段BC上時(shí),點(diǎn)P的坐標(biāo)(-t,2),當(dāng)點(diǎn)P在線段CD上時(shí),點(diǎn)P的坐標(biāo)(-3,5-t);③能確定,z=x+y

【解析】

1)根據(jù)平移的性質(zhì)即可得到結(jié)論;
2)①由點(diǎn)C的坐標(biāo)為(-32).得到BC=3,CD=2,由于點(diǎn)P的橫坐標(biāo)與縱坐標(biāo)互為相反數(shù);于是確定點(diǎn)P在線段BC上,有PB=CD,即可得到結(jié)果;
②當(dāng)點(diǎn)P在線段BC上時(shí),點(diǎn)P的坐標(biāo)(-t,2),當(dāng)點(diǎn)P在線段CD上時(shí),點(diǎn)P的坐標(biāo)(-3,5-t);
③如圖,過PPFBCABF,則PFAD,根據(jù)平行線的性質(zhì)即可得到結(jié)論.

解:(1)根據(jù)題意,可得
三角形OAB沿x軸負(fù)方向平移3個(gè)單位得到三角形DEC
∵點(diǎn)A的坐標(biāo)是(1,0),
∴點(diǎn)E的坐標(biāo)是(-2,0);
故答案為:(-2,0);
2)①∵點(diǎn)C的坐標(biāo)為(-3,2
BC=3,CD=2,
∵點(diǎn)P的橫坐標(biāo)與縱坐標(biāo)互為相反數(shù);
∴點(diǎn)P在線段BC上,
PB=CD,
t=2
∴當(dāng)t=2秒時(shí),點(diǎn)P的橫坐標(biāo)與縱坐標(biāo)互為相反數(shù);
故答案為:2;
②當(dāng)點(diǎn)P在線段BC上時(shí),點(diǎn)P的坐標(biāo)(-t,2),
當(dāng)點(diǎn)P在線段CD上時(shí),點(diǎn)P的坐標(biāo)(-35-t);
③能確定,
如圖,過PPFBCABF,


PFAD,
∴∠1=CBP=x°,∠2=DAP=y°
∴∠BPA=1+2=x°+y°=z°,
z=x+y

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料:

我們知道方程2x+3y=12有無數(shù)組解,但在實(shí)際生活中我們往往只需要求出其正整數(shù)解.例:由2x+3y=12,得y==4-x,(x、y為正整數(shù))

則有0x6

y=4-x為正整數(shù),則x為正整數(shù).

從而x=3,代入y=4-×3=2

2x+3y=12的正整數(shù)解為

利用以上方法解決下列問題:

七年級某班為了獎勵學(xué)習(xí)進(jìn)步的學(xué)生,購買了單價(jià)為3元的筆記本與單價(jià)為5元的鋼筆兩種獎品,共花費(fèi)35元,問有幾種購買方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y1=x+12+1y2=ax423交于點(diǎn)A1,3),過點(diǎn)Ax軸的平行線,分別交兩條拋物線于BC兩點(diǎn),且D、E分別為頂點(diǎn).則下列結(jié)論:①a=AC=AE;③△ABD是等腰直角三角形;④當(dāng)x1時(shí),y1y2  其中正確結(jié)論的個(gè)數(shù)是( )

A. 1個(gè)B2個(gè)C3個(gè)D4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知:EFAD,∠1=2,∠BAC=70°,求∠AGD的度數(shù).

解:∵EFAD(已知)

∴∠2=_________

∵∠1=2(已知)

∴∠1=__________

DGBA

又∵∠BAC=70°(已知)

∴∠AGD=_________°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)P在以AB為直徑的半圓內(nèi),連接AP、BP,并延長分別交半圓于點(diǎn)C、D,連接AD、BC并延長交于點(diǎn)F,作直線PF,下列說法一定正確的是(

①AC垂直平分BF;②AC平分∠BAF;③FP⊥AB;④BD⊥AF.

A. ①③ B. ①④ C. ②④ D. ③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線lll2交于點(diǎn)O,點(diǎn)P關(guān)于ll,l2的對稱點(diǎn)分別為P1、P2

(1)ll,l2相交所成的銳角∠AOB=60°,則∠P1OP2=______

(2)OP=3,P1P2=5,求△P1OP2的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ABC在平面直角坐標(biāo)系中的位置如圖所示.將ABC向右平移6個(gè)單位長度,再向下平移6個(gè)單位長度得到A1B1C1(圖中每個(gè)小方格邊長均為1個(gè)單位長度)

(1)在圖中畫出平移后的A1B1C1;

(2)直接寫出A1B1C1各頂點(diǎn)的坐標(biāo).

; ; ;

3)求出ABC的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小章利用一張左、右兩邊已經(jīng)破損的長方形紙片ABCD做折紙游戲,他將紙片沿EF折疊后,D,C兩點(diǎn)分別落在點(diǎn)D′,C′的位置,∠DEF=∠DEF,并利用量角器量得∠EFB66°,則∠AED′的度數(shù)為(  )

A. 66°B. 132°C. 48°D. 38°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司技術(shù)人員用沿直線AB折疊檢驗(yàn)塑膠帶兩條邊緣線a、b是否互相平行

1)如圖1,測得∠1=2,可判定ab嗎?請說明理由;

2)如圖2,測得∠1=2,且∠3=4,可判定ab嗎?請說明理由;

3)如圖3,若要使ab,則∠1與∠2應(yīng)該滿足什么關(guān)系式?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案