【題目】在四張編號為A,B,C,D的卡片(除編號外,其余完全相同)的正面分別寫上如圖所示正整數(shù)后,背面朝上,洗勻放好,現(xiàn)從中隨機抽取一張,不放回,再從剩下的卡片中隨機抽取一張.

(1)請用樹狀圖或列表的方法表示兩次抽取卡片的所有可能出現(xiàn)的結(jié)果,(卡片用A,B,C,D表示);
(2)我們知道,滿足a2+b2=c2的三個正整數(shù)a,b,c成為勾股數(shù),求抽到的兩張卡片上的數(shù)都是勾股數(shù)的概率.

【答案】
(1)解:畫樹狀圖如下:

則共有12種等可能的結(jié)果數(shù)


(2)解:∵共有12種等可能的結(jié)果數(shù),抽到的兩張卡片上的數(shù)都是勾股數(shù)的結(jié)果數(shù)為6種,

∴抽到的兩張卡片上的數(shù)都是勾股數(shù)的概率= =


【解析】(1)抓住已知,現(xiàn)從中隨機抽取一張,不放回,然后就出樹狀圖,一共有12種可能。
(2)觀察卡片上的數(shù)字,可知卡片A上的三個數(shù)不是勾股數(shù),因此滿足條件的結(jié)果數(shù)只有6種,根據(jù)概率公式即可求解。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,隧道的截面由拋物線和長方形構(gòu)成,長方形的長是8m,寬是2m,拋物線的最高點到路面的距離為6米.

(1)按如圖所示建立平面直角坐標(biāo)系,求表示該拋物線的函數(shù)表達式;
(2)一輛貨運卡車高為4m,寬為2m,如果該隧道內(nèi)設(shè)雙向車道,那么這輛貨車能否安全通過?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線 CB 和射線 OA,CB//OA,點 B 在點 C 的右側(cè).且滿足∠OCB=∠OAB100°,連接線段 OB,點 E、F 在直線 CB 上,且滿足∠FOB=∠AOBOE平分∠COF.

(1)求∠BOE

(2)當(dāng)點 E、F 在線段 CB 上時(如圖 1),∠OEC 與∠OBA 的和是否是定值?若是,求出這個值;若不是,說明理由。

(3)如果平行移動 AB,點 E、F 在直線 CB 上的位置也隨之發(fā)生變化.當(dāng)點 E、F 在點 C 左側(cè)時,∠OEC 和∠OBA 之間的數(shù)量關(guān)系是否發(fā)生變化?若不變,說明理由;若變化,求出他們之間的關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某生物興趣小組在四天的試驗研究中發(fā)現(xiàn):駱駝的體溫會隨外部環(huán)境溫度的變化而變化,而且在這四天中每晝夜的體溫變化情況相同.他們將一頭駱駝前兩晝夜的體溫變化情況繪制成如圖所示的圖象,請根據(jù)圖象完成下列問題:

(1)第一天中,在什么時間范圍內(nèi)這頭駱駝的體溫是上升的?它的體溫從最低上升到最高需要多長時間?

(2)第三天12時這頭駱駝的體溫是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形中,,上的點,于點,連接

1)求證:;

2)若,試證明:四邊形是菱形;

3)在(2)的條件下,已知,求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面的圖表是我國數(shù)學(xué)家發(fā)明的“楊輝三角”,此圖揭示了n為非負(fù)整數(shù))的展開式的項數(shù)及各項系數(shù)的有關(guān)規(guī)律.請你觀察,并根據(jù)此規(guī)律寫出:_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某物流公司現(xiàn)有114噸貨物,計劃同時租出AB兩種型號的車,王經(jīng)理發(fā)現(xiàn)一個運貨貨單上的一個信息是:

A型車(滿載)

B型車(滿載)

運貨總量

3輛

2輛

38噸

1輛

3輛

36噸

根據(jù)以上信息,解析下列問題:

11A型車和1B型車都裝滿貨物一次可分別運貨多少噸?

2)若物流公司打算一次運完,且恰好每輛車都裝滿貨物,請你幫該物流公司設(shè)計租車方案。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,已知AB=2,C,D是⊙O的上的兩點,且 + = ,M是AB上一點,則MC+MD的最小值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=AC,∠A=40°,D、E分別是AB、AC上的不動點,且BD+CE=BC,PBC上一動點,

1)當(dāng)PC=CE時,試求∠DPE的度數(shù)

2)當(dāng)PC=BD時,∠DPE的度數(shù)還會與(1)的結(jié)果相同嗎?若相同請寫出求解過程,若不相同,請說明理由

查看答案和解析>>

同步練習(xí)冊答案