【題目】下列一組方程:①,②,③,…小明通過觀察,發(fā)現(xiàn)了其中蘊含的規(guī)律,并順利地求出了前三個方程的解第①個方程的解為;第②個方程的解為;第③個方程的解為.若n為正整數(shù),且關于x的方程的一個解是,則n的值等于____________.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,P為⊙O外一點,PA、PB分別切⊙O于A、B,CD切⊙O于點E,分別交PA,PB于點C、D,若△PCD的周長為24,⊙O的半徑是5,則點P到圓心O的距離_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】運動員將小球沿與地面成一定角度的方向擊出,在不考慮空氣阻力的條件下,小球的飛行高度h(m)與它的飛行時間t(s)滿足二次函數(shù)關系,t與h的幾組對應值如下表所示.
t(s) | 0 | 0.5 | 1 | 1.5 | 2 | … |
h(m) | 0 | 8.75 | 15 | 18.75 | 20 | … |
(1)求h與t之間的函數(shù)關系式(不要求寫t的取值范圍);
(2)求小球飛行3s時的高度;
(3)問:小球的飛行高度能否達到22m?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明大學畢業(yè)回家鄉(xiāng)創(chuàng)業(yè),第一期培植盆景與花卉各50盆售后統(tǒng)計,盆景的平均每盆利潤是160元,花卉的平均每盆利潤是19元,調研發(fā)現(xiàn):
①盆景每增加1盆,盆景的平均每盆利潤減少2元;每減少1盆,盆景的平均每盆利潤增加2元;②花卉的平均每盆利潤始終不變.
小明計劃第二期培植盆景與花卉共100盆,設培植的盆景比第一期增加x盆,第二期盆景與花卉售完后的利潤分別為W1,W2(單位:元)
(1)用含x的代數(shù)式分別表示W1,W2;
(2)當x取何值時,第二期培植的盆景與花卉售完后獲得的總利潤W最大,最大總利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下面內容,并按要求解決問題: 問題:“在平面內,已知分別有個點,個點,個點,5 個點,…,n 個點,其中任意三 個點都不在同一條直線上.經過每兩點畫一條直線,它們可以分別畫多少條直線? ” 探究:為了解決這個問題,希望小組的同學們設計了如下表格進行探究:(為了方便研 究問題,圖中每條線段表示過線段兩端點的一條直線)
請解答下列問題:
(1)請幫助希望小組歸納,并直接寫出結論:當平面內有個點時,直線條數(shù)為 ;
(2)若某同學按照本題中的方法,共畫了條直線,求該平面內有多少個已知點.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知⊙O的半徑為5,直線l切⊙O于A,在直線l上取點B,AB=4.
(1)請用無刻度的直尺和圓規(guī),過點B作直線m⊥l,交⊙O于C、D(點D在點C的上方);(保留作圖痕跡,不要求寫作法)
(2)求BC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,正方形ABCD,G是BC邊上ー點,連接AG,分別以AG和BG為直角邊作等腰Rt△AGF和等腰Rt△GBE,使∠GBE=∠AGF=90°,點E,F在BC下方,連接EF.
求證:①∠BAG=∠BGF,
②CG=EF:
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com