【題目】(1)某學(xué)校“智慧方園”數(shù)學(xué)社團遇到這樣一個題目:
如圖1,在中,點在線段上,,,,,求的長.
經(jīng)過社團成員討論發(fā)現(xiàn),過點作,交的延長線于點,通過構(gòu)造就可以解決問題(如圖.
請回答: , .
(2)請參考以上解決思路,解決問題:
如圖3,在四邊形中,對角線與相交于點,,,,,求的長.
【答案】(1) 75°;4(2)
【解析】
(1)根據(jù)平行線的性質(zhì)可得出∠ADB=∠OAC=75°,結(jié)合∠BOD=∠COA可得出△BOD∽△COA,利用相似三角形的性質(zhì)可求出OD的值,進(jìn)而可得出AD的值,由三角形內(nèi)角和定理可得出∠ABD=75°=∠ADB,由等角對等邊可得出AB=AD=4,此題得解;
(2)過點B作BE∥AD交AC于點E,同(1)可得出AE=4,在Rt△AEB中,利用勾股定理可求出BE的長度,再在Rt△CAD中,利用勾股定理可求出DC的長,此題得解.
解:(1)∵BD∥AC,
∴∠ADB=∠OAC=75°.
∵∠BOD=∠COA,
∴△BOD∽△COA,
∴.
又∵AO=3,
∴OD=AO=,
∴AD=AO+OD=4.
∵∠BAD=30°,∠ADB=75°,
∴∠ABD=180°-∠BAD-∠ADB=75°=∠ADB,
∴AB=AD=4
故答案為:75;4.
(2)過點B作BE∥AD交AC于點E,如圖所示.
∵AC⊥AD,BE∥AD,
∴∠DAC=∠BEA=90°.
∵∠AOD=∠EOB,
∴△AOD∽△EOB,
∴.
∵BO:OD=1:3,
∴
∵AO=3,
∴EO=,
∴AE=4
∵∠ABC=∠ACB=75°,
∴∠BAC=30°,AB=AC,
∴AB=2BE.
在Rt△AEB中,BE2+AE2=AB2,即(4)2+BE2=(2BE)2,
解得:BE=4,
∴AB=AC=8,AD=12.
在Rt△CAD中,AC2+AD2=CD2,即82+122=CD2,
解得:CD=4.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知長方形ABCD與正方形BEFM,且A、B、E在一直線上,已知AB=a,BC=b,BE=c,且a>b>c>0.設(shè)△ADE的面積為S1.
(1)用含a、b、c的代數(shù)式表示S1;
(2)正方形BEFM繞B順時針旋轉(zhuǎn)180度得到正方形BEFM,連接DM,用含a、b、c的代數(shù)式表示△DCM的面積為S2;
(3)請比較S1與S2的大小關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,O點在BC邊上,∠BAC的平分線交⊙O于點D,連接BD、CD,過點D作BC的平行線,與AB的延長線相交于點P.
(1)求證:PD是⊙O的切線;
(2)求證:△PBD∽△DCA;
(3)當(dāng)AB=6,AC=8時,求線段PB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商品根據(jù)以往銷售經(jīng)驗,每天的售價與銷售量之間有如下表的關(guān)系:
每千克售價(元) | 38 | 37 | 36 | 35 | … | 20 |
每天銷售量(千克) | 50 | 52 | 54 | 56 | … | 86 |
設(shè)當(dāng)單價從38元/千克下調(diào)到x元時,銷售量為y千克,已知y與x之間的函數(shù)關(guān)系是一次函數(shù).
(1)求y與x的函數(shù)解析式;
(2)如果某商品的成本價是20元/千克,為使某一天的利潤為780元,那么這一天的銷售價應(yīng)為多少元?(利潤=銷售總金額﹣成本)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD中,E是BC邊的中點,連接DE并延長交AB的延長線于點F,則在題中條件下,下列結(jié)論不能成立的是( )
A. BE=CE B. AB=BF C. DE=BE D. AB=DC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)藝術(shù)節(jié)期間,學(xué)校向?qū)W生征集書畫作品,學(xué)校從全校30個班中隨機抽取了4個班 (用A,B,C,D表示),對征集到的作品的數(shù)量進(jìn)行了分析統(tǒng)計,制作了兩幅不完整的統(tǒng)計圖.請根據(jù)以上信息,回答下列問題:
(1)請你將條形統(tǒng)計圖補充完整,并估計全校共征集多少件作品?
(2)如果全校征集的作品中有5件獲得一等獎,其中有3名作者是男生,2名作者是女生,現(xiàn)要在獲得一等獎的作者中選取兩人參加表彰座談會,請你用列表或樹狀圖的方法,求恰好選取的兩名學(xué)生性別相同的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,數(shù)軸上的點,,,,對應(yīng)的數(shù)分別為,,,,,且這五個點滿足每相鄰兩個點之間的距離都相等.
(1)填空:______0,______0,______0(填“”,“”或“”);
(2)化簡:;
(3)若,,直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線經(jīng)過點、、.
(1)求拋物線的解析式;
(2)聯(lián)結(jié)AC、BC、AB,求的正切值;
(3)點P是該拋物線上一點,且在第一象限內(nèi),過點P作交軸于點,當(dāng)點在點的上方,且與相似時,求點P的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com