【題目】已知:二次函數(shù)、圖像的頂點分別為A、B(其中m、a為實數(shù)),點C的坐標(biāo)為(0,).
(1)試判斷函數(shù)的圖像是否經(jīng)過點C,并說明理由;
(2)若m為任意實數(shù)時,函數(shù)的圖像始終經(jīng)過點C,求a的值;
(3)在(2)的條件下,存在不唯一的x值,當(dāng)x增大時,函數(shù)的值減小且函數(shù)的值增大.
①直接寫出m的范圍;
②點P為x軸上異于原點O的任意一點,過點P作y軸的平行線,與函數(shù)、的圖像分別相交于點D、E.試說明的值只與點P的位置有關(guān).
【答案】(1)函數(shù)y1的圖像經(jīng)過點C,見解析;(2);(3)①;②見解析
【解析】
(1)取x=0時,計算得,說明函數(shù)的圖像經(jīng)過點C;
(2)將點C(0,)代入得,求得a的值;
(3)①只要的對稱軸始終在的對稱軸右側(cè),就滿足題目的要求,得出m的范圍;
②設(shè)點P的坐標(biāo)為(,0),求得DE=,利用勾股定理求得AB=,即可說明結(jié)論.
(1)函數(shù)的圖像經(jīng)過點C. 理由如下:
當(dāng)x=0時,==,
∴函數(shù)的圖像經(jīng)過點C.
(2)將點C(0,)代入得:
,∴,∵m為任意實數(shù)時,函數(shù)的圖像始終經(jīng)過點C,
∴的成立與m無關(guān),
∴,∴;
(3)①的對稱軸為:,
的對稱軸為:,
∵,
∴兩函數(shù)的圖像開口向下,當(dāng)時,x增大時,函數(shù)的值減小且函數(shù)的值增大.
∴;
②設(shè)點P的坐標(biāo)為(,0),則=,=,
∴DE===
由①可知:,∴DE=;
過A點作x軸的平行線,過B點作y軸的平行線,兩平行線相交點F,
則點F 的坐標(biāo)為(,),
∴AF==,BF==,
∴AB==,∴==,
故的值只與點P的位置有關(guān).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,拋物線y=﹣x2+bx+c經(jīng)過點A(﹣1,0)和C(0,3).(1)求拋物線的解析式;(2)在拋物線的對稱軸上,是否存在點P,使PA+PC的值最?如果存在,請求出點P的坐標(biāo),如果不存在,請說明理由;(3)設(shè)點M在拋物線的對稱軸上,當(dāng)△MAC是直角三角形時,求點M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了解全校學(xué)生主題閱讀的情況,隨機抽查了部分學(xué)生在某一周主題閱讀文章的篇數(shù),并制成下列統(tǒng)計圖表.
請根據(jù)統(tǒng)計圖表中的信息,解答下列問題:
(1)求被抽查的學(xué)生人數(shù)和m的值;
(2)求本次抽查的學(xué)生文章閱讀篇數(shù)的中位數(shù)和眾數(shù);
(3)若該校共有1200名學(xué)生,根據(jù)抽查結(jié)果,估計該校學(xué)生在這一周內(nèi)文章閱讀的篇數(shù)為4篇的人數(shù)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中華人民共和國《城市道路路內(nèi)停車泊位設(shè)置規(guī)范》規(guī)定:
一、在城市道路范圍內(nèi),在不影響行人、車輛通行的情況下,政府有關(guān)部門可以規(guī)劃停車泊位.停車泊位的排列方式有三種,如圖所示:
二、雙向通行道路,路幅寬米以上的,可在兩側(cè)設(shè)停車泊位,路幅寬米到米的,可在單側(cè)設(shè)停車泊位,路幅寬米以下的,不能設(shè)停車泊位;
三、規(guī)定小型停車泊位,車位長米,車位寬米;
四、設(shè)置城市道路路內(nèi)機動車停車泊位后,用于單向通行的道路寬度應(yīng)不小于米.
根據(jù)上述的規(guī)定,在不考慮車位間隔線和車道間隔線的寬度的情況下,如果在一條路幅寬為米的雙向通行車道設(shè)置同一種排列方式的小型停車泊位,請回答下列問題:
(1)可在該道路兩側(cè)設(shè)置停車泊位的排列方式為 ;
(2)如果這段道路長米,那么在道路兩側(cè)最多可以設(shè)置停車泊位 個.
(參考數(shù)據(jù):,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的半徑為,A、B為⊙O上兩點,C為⊙O內(nèi)一點,AC⊥BC,AC=,BC=.
(1)判斷點O、C、B的位置關(guān)系;
(2)求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O中直徑AB⊥弦CD于E,點F是的中點,CF交AB于I,連接BD、AC、AD.
(1)求證:BI=BD;
(2)若OI=1,OE=2,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某電器商場銷售甲、乙兩種品牌空調(diào),已知每臺乙種品牌空調(diào)的進(jìn)價比每臺甲種品牌空調(diào)的進(jìn)價高20%,用7200元購進(jìn)的乙種品牌空調(diào)數(shù)量比用3000元購進(jìn)的甲種品牌空調(diào)數(shù)量多2臺.
(1)求甲、乙兩種品牌空調(diào)的進(jìn)貨價;
(2)該商場擬用不超過16000元購進(jìn)甲、乙兩種品牌空調(diào)共10臺進(jìn)行銷售,其中甲種品牌空調(diào)的售價為2500元/臺,乙種品牌空調(diào)的售價為3500元/臺.請您幫該商場設(shè)計一種進(jìn)貨方案,使得在售完這10臺空調(diào)后獲利最大,并求出最大利潤.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個不透明的口袋里有四個完全相同的小球,把它們分別標(biāo)號為,,,.隨機摸取一個小球然后放回,再隨機摸取一個.
請用畫樹狀圖和列表的方法,求下列事件的概率:
(1)兩次取出的小球標(biāo)號相同;
(2)兩次取出的小球標(biāo)號的和等于4.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某數(shù)學(xué)小組在郊外的水平空地上對無人機進(jìn)行測高實驗.如圖,兩臺測角儀分別放在A、B位置,且離地面高均為1米(即米),兩臺測角儀相距50米(即AB=50米).在某一時刻無人機位于點C (點C與點A、B在同一平面內(nèi)),A處測得其仰角為,B處測得其仰角為.(參考數(shù)據(jù):,,,,)
(1)求該時刻無人機的離地高度;(單位:米,結(jié)果保留整數(shù))
(2)無人機沿水平方向向左飛行2秒后到達(dá)點F(點F與點A、B、C在同一平面內(nèi)),此時于A處測得無人機的仰角為,求無人機水平飛行的平均速度.(單位:米/秒,結(jié)果保留整數(shù))
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com