【題目】如圖,直線yx2k≠0)與y軸交于點A,與雙曲線y在第一象限內交于點B(3,b),在第三象限內交于點C

1)求雙曲線的解析式;

2)直接寫出不等式x2的解集;

3)若ODAB,在第一象限交雙曲線于點D,連接AD,求SAOD

【答案】1y;(2)﹣1x0x3;(3

【解析】

1)把點B3,b)代入yx2,得到B的坐標,然后根據(jù)待定系數(shù)法即可求得雙曲線的解析式;

2)解析式聯(lián)立求得C的坐標,然后根據(jù)圖象即可求得;

3)求得直線OD的解析式,然后解析式聯(lián)立求得D的坐標,根據(jù)三角形面積公式求得即可.

1)∵點B3,b)在直線yx2k≠0)上,

b321,

B31),

∵雙曲線y經(jīng)過點B,

k3×13,

∴雙曲線的解析式為y;

2)解,

C(﹣1,﹣3),

由圖象可知,不等式x2的解集是﹣1x0x3;

3)∵ODAB,

∴直線OD的解析式為yx

,解得,

D),

由直線yx2可知A0,﹣2),

OA2,

SAOD

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線yax25axca0)與x軸負半軸交于A、B兩點(點A在點B的左側),與y軸交于C點,D是拋物線的頂點,過DDHx軸于點H,延長DHAC于點E,且SABDSACB916,

1)求A、B兩點的坐標;

2)若△DBH與△BEH相似,試求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,Rt△ABC中,AB⊥BC,AB=6,BC=4,P△ABC內部的一個動點,且滿足∠PAB=∠PBC,則線段CP長的最小值為( 。

A. 2 B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB6cmAD8cm,連接BD,將△ABDB點作順時針方向旋轉得到△A′B′D′B′B重合),且點D′剛好落在BC的延長上,A′D′CD相交于點E

1)求矩形ABCD與△A′B′D′重疊部分(如圖中陰影部分A′B′CE)的面積;

2)將△A′B′D′2cm/s的速度沿直線BC向右平移,當B′移動到C點時停止移動.設矩形ABCD與△A′B′D′重疊部分的面積為ycm2,移動的時間為x秒,請你求出y關于x的函數(shù)關系式,并指出自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,四邊形的頂點是坐標原點,點在第一象限,在第四象限,軸的正半軸上,.

(1)求點和點的坐標;

(2)是線段上的一個動點(不與點重合) ,以每秒個單位的速度由點向點運動,過點的直線軸平行,直線交邊或邊于點,交邊或邊于點,設點.運動時間為,線段的長度為,已知,直線恰好過點 .

①當,關于的函數(shù)關系式;

②點出發(fā)時點也從點出發(fā),以每秒個單位的速度向點運動,點停止時點也停止.的面積為 ,的函數(shù)關系式;

③直接寫出②中的最大值是 .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,梯形ABCD中,ABCD,∠A90°,EAD上,且CE平分∠BCDBE平分∠ABC,則下列關系式中成立的有( 。

,②,③,④CE2CDBC

A.2B.3C.4D.5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,將一塊含有45°角的直角三角板如圖放置,直角頂點C的坐標為(1,0),頂點A的坐標為(0,2),頂點B恰好落在第一象限的雙曲線上,現(xiàn)將直角三角板沿x軸正方向平移,當頂點A恰好落在該雙曲線上時停止運動,則此時點C的對應點C′的坐標為( 。

A.,0B.2,0C.,0D.3,0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知一次函數(shù)y1=﹣x+m與二次函數(shù)y2ax2+bx3的圖象交于A(﹣1,0)、B2,﹣3)兩點.

1)求m的值和二次函數(shù)的表達式.

2)當y1y2時,直接寫出自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點的直徑的延長線上,點上,且AC=CD,∠ACD=120°.

1)求證:的切線;

2)若的半徑為2,求圖中陰影部分的面積.

查看答案和解析>>

同步練習冊答案