【題目】小明坐于堤邊垂釣,如圖,河堤AC的坡角為30°,AC長米,釣竿AO的傾斜角是60°,其長為3米,若AO與釣魚線OB的夾角為60°,求浮漂B與河堤下端C之間的距離.
【答案】浮漂B與河堤下端C之間的距離為1.5米.
【解析】
試題分析:延長OA交BC于點D.先由傾斜角定義及三角形內(nèi)角和定理求出∠CAD=180°-∠ODB-∠ACD=90°,解Rt△ACD,得出AD=ACtan∠ACD=米,CD=2AD=3米,
再證明△BOD是等邊三角形,得到BD=OD=OA+AD=4.5米,然后根據(jù)BC=BD-CD即可求出浮漂B與河堤下端C之間的距離.
試題解析:延長OA交BC于點D.
∵AO的傾斜角是60°,
∴∠ODB=60°.
∵∠ACD=30°,
∴∠CAD=180°-∠ODB-∠ACD=90°.
在Rt△ACD中,AD=ACtan∠ACD==(米),
∴CD=2AD=3米,
又∵∠O=60°,
∴△BOD是等邊三角形,
∴BD=OD=OA+AD=3+=4.5(米),
∴BC=BD-CD=4.5-3=1.5(米).
答:浮漂B與河堤下端C之間的距離為1.5米.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=90°,以AB的中點O為圓心、OA為半徑的圓交AC于點D,E是BC的中點,連接DE,OE.
(1)判斷DE與⊙O的位置關系,并說明理由;
(2)求證:BC2=2CD·OE;
(3)若cos∠BAD=,BE=6,求OE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列各組線段的長為邊,能組成三角形的是( )
A. 2cm,5cm,10cmB. 2cm,3cm,5cmC. 2cm,3cm,4cmD. 8cm,4cm,4cm
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩名運動員進行了5次百米賽跑測試,兩人的平均成績都是13.3秒,而S甲2=3.7,S乙2=6.25,則兩人中成績較穩(wěn)定的是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一段拋物線,記為C1,它與軸交于點O,A1;將C1繞點A1旋轉180°得C2,交軸于點A2;將C2繞點A2旋轉180°得C3,交 軸于點A3;……如此進行下去,得到一“波浪線”.若點P(41,)在此“波浪線”上,則的值為
A.2 B. C.0 D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在四邊形ABCD中,AB=BC=CD=DA,如果添加一個條件,即可推出該四邊形是正方形,那么這個條件可以是( )
A. AC⊥BD B. AB∥CD C. ∠A=90° D. ∠A=∠C
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com