【題目】如圖,在平面直角坐標系中,直線y=﹣3x+3與x軸、y軸分別交于A、B兩點,以AB為邊在第一象限作正方形ABCD,點D在雙曲線 (k≠0)上.將正方形沿x軸負方向平移a個單位長度后,點C恰好落在該雙曲線上,則a的值是( )
A.1
B.2
C.3
D.4
【答案】B
【解析】解:作CE⊥y軸于點E,交雙曲線于點G.作DF⊥x軸于點F.
在y=﹣3x+3中,令x=0,解得:y=3,即B的坐標是(0,3).
令y=0,解得:x=1,即A的坐標是(1,0).
則OB=3,OA=1.
∵∠BAD=90°,
∴∠BAO+∠DAF=90°,
又∵直角△ABO中,∠BAO+∠OBA=90°,
∴∠DAF=∠OBA,
∵在△OAB和△FDA中,
,
∴△OAB≌△FDA(AAS),
同理,△OAB≌△FDA≌△BEC,
∴AF=OB=EC=3,DF=OA=BE=1,
故D的坐標是(4,1),C的坐標是(3,4).代入y= 得:k=4,則函數(shù)的解析式是:y= .
∴OE=4,
則C的縱坐標是4,把y=4代入y= 得:x=1.即G的坐標是(1,4),
∴CG=2.
故選:B.
【考點精析】掌握圖形的平移和平移的性質(zhì)是解答本題的根本,需要知道對應線段,對應點所連線段平行(或在同一直線上)且相等;對應角相等;平移方向和距離是它的兩要素;①經(jīng)過平移之后的圖形與原來的圖形的對應線段平行(或在同一直線上)且相等,對應角相等,圖形的形狀與大小都沒有發(fā)生變化;②經(jīng)過平移后,對應點所連的線段平行(或在同一直線上)且相等.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,E為BC邊上的一點,且AE與DE分別平分∠BAD和∠ADC
(1)求證:AE⊥DE;
(2)設以AD為直徑的半圓交AB于F,連結DF交AE于G,已知CD=5,AE=8.
①求BC的長;
②求 值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=3,AC=4,BC=5,P為邊BC上一動點,PE⊥AB于E,PF⊥AC于F,M為EF中點,則AM的最小值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,點D、E分別是邊AB,BC的中點.若△DBE的周長是6,則△ABC的周長是( )
A.8
B.10
C.12
D.14
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,反比例函數(shù)y= 的圖象與一次函數(shù)y=mx+b的圖象交于A(1,3),B(n,﹣1)兩點.
(1)求反比例函數(shù)與一次函數(shù)的函數(shù)關系式;
(2)求△AOB的面積;
(3)我們知道,一次函數(shù)y=x﹣1的圖象可以由正比例函數(shù)y=x的圖象向下平移1個長度單位得到.試結合平移解決下列問題:在(1)的條件下,請你試探究:
①函數(shù)y= 的圖象可以由y= 的圖象經(jīng)過怎樣的平移得到?
②點P(x1 , y1)、Q (x2 , y2) 在函數(shù)y= 的圖象上,x1<x2 . 試比較y1與y2的大。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,一次函數(shù)y1=ax+b(a,b為常數(shù),且a≠0)與反比例函數(shù)y2= (m為常數(shù),且m≠0)的圖象交于點A(﹣2,1)、B(1,n).
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)連結OA、OB,求△AOB的面積;
(3)直接寫出當y1<y2<0時,自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,D、E分別是邊AB、AC的中點,O是三角形內(nèi)部一點,連接OB、OC,G、H分別是OC、OB的中點,試說明四邊形DEGH是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,兩條筆直的公路l1、l2相交于點O,村莊C的村民在公路的旁邊建三個加工廠 A、B、D,已知AB=BC=CD=DA=5公里,村莊C到公路l1的距離為4公里,則村莊C到公路l2的距離是( )
A.3公里
B.4公里
C.5公里
D.6公里
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com