【題目】如圖,在ABC中,ABAC,以AB為直徑的與邊BCAC分別交于D、E,DF的切線,交AC于點F

1)求證:DFAC;

2)若AE4,DF3,求的半徑.

【答案】1)證明見詳解

2)半徑為

【解析】

1)連接OD,作OGAC于點G,推出∠ODB=C;然后證明DFAC,∠DFC=90°,推出∠ODF=DFC=90°,即可證明;
2)過OOGAC,利用垂徑定理和矩形的性質(zhì),勾股定理解答即可.

1)證明:如圖,連接OD,作OGAC于點G,

OB=OD,
∴∠ODB=B
又∵AB=AC,
∴∠C=B
∴∠ODB=C,

AC//OD
DF的切線

即:DFOD,
∴∠ODF=DFC=90°,
DFAC;
2)過OOGAC
由垂徑定理可知:OG垂直平分AE,
∴∠AGO=90°AG=2,
由(1)可知:四邊形ODFG為矩形,
OG=DF=3

∴在RtAGO中,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩名自行車運(yùn)動員同時從A地出發(fā)到B地,在直線公路上進(jìn)行騎自行車訓(xùn)練.如圖,反映了甲、乙兩名自行車運(yùn)動員在公路上進(jìn)行訓(xùn)練時的行駛路程S(千米)與行駛時間t(小時)之間的關(guān)系,下列四種說法:①甲的速度為40千米/小時;②乙的速度始終為50千米/小時;③行駛1小時時乙在甲前10千米;④3小時時甲追上乙.其中正確的個數(shù)有(

A.1個 B.2個 C.3個 D.4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校開展“誦讀詩詞經(jīng)典,弘揚(yáng)傳統(tǒng)文化”詩詞誦讀活動,為了解八年級學(xué)生在這次活動中的詩詞誦背情況,隨機(jī)抽取了30名八年級學(xué)生,調(diào)查“一周詩詞誦背數(shù)量調(diào)查結(jié)果如表所示.

一周詩詞誦背數(shù)量(首)

2

3

4

5

6

7

人數(shù)(人)

1

3

5

9

10

2

1)計算這30人平均每人一周誦背詩詞多少首;

2)該校八年級共有600名學(xué)生參加了這次活動,在這次活動中,估計八年級學(xué)生中一周誦背詩詞6首以上(含6首)的學(xué)生有多少人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程(k﹣1)x2+(2k﹣3)x+k+1=0有兩個不相等的實數(shù)根.

(1)求k的取值范圍;

(2)如果k是符合條件的最大整數(shù),且一元二次方程x2﹣4x+k=0x2+mx﹣1=0有一個相同的根,求此時m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線x軸交于A、B兩點(AB的左側(cè)),與y軸正半軸交于點C,拋物線的頂點為P,對稱軸為直線,且OC3OA

1)求拋物線的解析式;

2)點D2m)在拋物線上,點E在直線AP上,使DEOE,求點E的橫坐標(biāo);

3)如圖2,連接BC與拋物線的對稱軸交于點F,在拋物線上是否存在點G,使GPFGBF的面積相等,若存在,求出點G坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線yax2+bx+3x軸交于點A(﹣1,0),B3,0).

1)求拋物線的解析式;

2)過點D0)作x軸的平行線交拋物線于E,F兩點,求EF長;

3)當(dāng)y時,直接寫出x的取值范圍是 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中放入一個一邊長OC9的矩形紙片ABCO,將紙片翻折后,點B恰好落在x軸上,記為點B′,折痕為CE,已知tanOBC=.
1)求點B′的坐標(biāo);
2)求折痕CE所在直線的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“大美武漢·詩意江城”,某校數(shù)學(xué)興趣小組就“最想去的武漢市旅游景點”隨機(jī)調(diào)查了本校3000名學(xué)生中的部分學(xué)生,提供四個景點選擇:A、黃鶴樓;B、東湖海洋世界;C、極地海洋世界;D、歡樂谷.要求每位同學(xué)選擇且只能選擇一個最想去的景點,下面是根據(jù)調(diào)查結(jié)果進(jìn)行數(shù)據(jù)整理后繪制出的不完整的統(tǒng)計圖:

請根據(jù)圖中提供的信息,解答下列問題:

(1) 一共調(diào)查了學(xué)生___________人

(2) 扇形統(tǒng)計圖中表示“最想去的景點D”的扇形圓心角為___________度

(3) 如果A、BC、D四個景點提供給學(xué)生優(yōu)惠門票價格分別為20元、30元、40元、60元,根據(jù)以上的統(tǒng)計估計全校學(xué)生到對應(yīng)的景點所需要門票總價格是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,∠C90°AC16cm,BC8cm,一動點P從點C出發(fā)沿著CB方向以2cm/s的速度運(yùn)動,另一動點QA出發(fā)沿著AC邊以4cm/s的速度運(yùn)動,P、Q兩點同時出發(fā),運(yùn)動時間為ts).

1)若PCQ的面積是ABC面積的,求t的值?

2PCQ的面積能否與四邊形ABPQ面積相等?若能,求出t的值;若不能,說明理由.

查看答案和解析>>

同步練習(xí)冊答案