【題目】如圖,已知拋物線經(jīng)過A(3,0),B(0,3)兩點.

(1)求此拋物線的解析式和直線AB的解析式;

(2)如圖①,動點E從O點出發(fā),沿著OA方向以1個單位/秒的速度向終點A勻速運動,同時,動點F從A點出發(fā),沿著AB方向以個單位/秒的速度向終點B勻速運動,當(dāng)E,F(xiàn)中任意一點到達終點時另一點也隨之停止運動,連接EF,設(shè)運動時間為t秒,當(dāng)t為何值時,△AEF為直角三角形?

(3)如圖②,取一根橡皮筋,兩端點分別固定在A,B處,用鉛筆拉著這根橡皮筋使筆尖P在直線AB上方的拋物線上移動,動點P與A,B兩點構(gòu)成無數(shù)個三角形,在這些三角形中是否存在一個面積最大的三角形?如果存在,求出最大面積,并指出此時點P的坐標(biāo);如果不存在,請簡要說明理由.

【答案】(1),y=﹣x+3;(2);(3)存在面積最大,最大是,此時點P(,).

【解析】

試題分析:(1)用待定系數(shù)法求出拋物線,直線解析式;

(2)分兩種情況進行計算即可;

(3)確定出面積達到最大時,直線PC和拋物線相交于唯一點,從而確定出直線PC解析式,根據(jù)銳角三角函數(shù)求出BD,計算即可.

試題解析:(1)∵拋物線經(jīng)過A(3,0),B(0,3)兩點,∴,∴,∴,設(shè)直線AB的解析式為y=kx+n,∴,∴,∴y=﹣x+3;

(2)由運動得,OE=t,AF=t,∴AE=OA﹣OE=3﹣t,∵△AEF為直角三角形,∴①△AOB∽△AEF,∴,∴t=,②△AOB∽△AFE,∴,∴,∴t=;

(3)如圖,存在,過點P作PC∥AB交y軸于C,∵直線AB解析式為y=﹣x+3,∴設(shè)直線PC解析式為y=﹣x+b,聯(lián)立,∴,∴∴△=9﹣4(b﹣3)=0,b=,∴BC=﹣3=,x=,∴ P(,).

過點B作BD⊥PC,∴直線BD解析式為y=x+3,∴BD=,∴BD=,∵AB=,S最大=AB×BD==

即:存在面積最大,最大是,此時點P().

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC在平面直角坐標(biāo)系的坐標(biāo)分別為A(﹣1,5),B(﹣1,0),C(﹣4,3),按要求完成:

(1)在同一坐標(biāo)系中,畫出ABC關(guān)于y軸對稱的圖形A'B'C';

(2)若CDABCAB邊的中線,ECD的中點,FAE的中點,連接AE、BE,F(xiàn)B,則EFB的面積S=   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC,B,C的平分線交于點O,D是外角與內(nèi)角平分線交點,E是外角平分線交點,若∠BOC=120°,則∠D=( )

A. 15° B. 20° C. 25° D. 30°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一組數(shù)據(jù)26,810x的眾數(shù)是6,則這組數(shù)據(jù)的中位數(shù)是_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果1是關(guān)于x方程x+2m﹣5=0的解,則m的值是( 。

A. ﹣4 B. 4 C. ﹣2 D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解全市九年級學(xué)生某次數(shù)學(xué)模擬考試情況,現(xiàn)從全市30000名九年級考生中隨機抽取部分學(xué)生的數(shù)學(xué)成績進行調(diào)查,并將調(diào)查結(jié)果繪制成如下圖表:

分數(shù)段

頻數(shù)

頻率

 x<60

 20

 0.10

 60≤x<70

 28

 0.14

  70≤x<80

 54

 0.27

 80≤x<90

 a

 0.20

  90≤x<100

 24

 0.12

  100≤x<110

 18

 b

  110≤x<120

 16

 0.08

請根據(jù)以上圖表提供的信息,解答下列問題:

(1)表格中的a=   ,b=   

(2)請補全頻數(shù)分布直方圖;

(3)如果把成績在90分以上(含90分)定為優(yōu)秀,那么該市30000名九年級學(xué)生中本次數(shù)學(xué)模擬考試成績?yōu)閮?yōu)秀的學(xué)生約有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】東坡商貿(mào)公司購進某種水果的成本為20元/kg,經(jīng)過市場調(diào)研發(fā)現(xiàn),這種水果在未來48天的銷售單價p(元/kg)與時間t(天)之間的函數(shù)關(guān)系式為:

,且其日銷售量y(kg)與時間t(天)的關(guān)系如下表:

(1)已知y與t之間的變化規(guī)律符合一次函數(shù)關(guān)系,試求在第30天的日銷售量是多少?

(2)問哪一天的銷售利潤最大?最大日銷售利潤為多少?

(3)在實際銷售的前24天中,公司決定每銷售1kg水果就捐贈n元利潤(n<9)給精準(zhǔn)扶貧對象.現(xiàn)發(fā)現(xiàn):在前24天中,每天扣除捐贈后的日銷售利潤隨時間t的增大而增大,求n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】矩形具有而菱形不具有的性質(zhì)是(  )

A.對角線互相平分B.對角線相等

C.對角線互相垂直且平分D.對角線互相垂直

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】昨天早晨7點,小明乘車從家出發(fā),去西安參加中學(xué)生科技創(chuàng)新大賽,賽后,他當(dāng)天按原路返回,如圖,是小明昨天出行的過程中,他距西安的距離y(千米)與他離家的時間x(時)之間的函數(shù)圖象.

根據(jù)下面圖象,回答下列問題:

(1)求線段AB所表示的函數(shù)關(guān)系式;

(2)已知昨天下午3點時,小明距西安112千米,求他何時到家?

查看答案和解析>>

同步練習(xí)冊答案