【題目】計(jì)算:(﹣ )﹣1﹣| ﹣1|+2sin60°+(π﹣4)0 .
【答案】解:原式=2﹣ +1+2× +1 =2﹣ +1+ +1
=4
【解析】原式利用零指數(shù)冪、負(fù)整數(shù)指數(shù)冪法則,絕對(duì)值的代數(shù)意義,以及特殊角的三角函數(shù)值計(jì)算即可得到結(jié)果.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解零指數(shù)冪法則的相關(guān)知識(shí),掌握零次冪和負(fù)整數(shù)指數(shù)冪的意義: a0=1(a≠0);a-p=1/ap(a≠0,p為正整數(shù)),以及對(duì)整數(shù)指數(shù)冪的運(yùn)算性質(zhì)的理解,了解aman=am+n(m、n是正整數(shù));(am)n=amn(m、n是正整數(shù));(ab)n=anbn(n是正整數(shù));am/an=am-n(a不等于0,m、n為正整數(shù));(a/b)n=an/bn(n為正整數(shù)).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB與半徑為2的⊙O相切于點(diǎn)C,D是⊙O上一點(diǎn),且∠EDC=30°,弦EF∥AB,則EF的長(zhǎng)度為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明早晨跑步,他從自己家出發(fā),向東跑了2km到達(dá)小彬家,繼續(xù)向東跑了1.5km到達(dá)小紅家,然后又向西跑了4.5km到達(dá)學(xué)校,最后又向東,跑回到自己家.
(1)以小明家為原點(diǎn),以向東為正方向,用1個(gè)單位長(zhǎng)度表示1km,在圖中的數(shù)軸上,分別用點(diǎn)A表示出小彬家,用點(diǎn)B表示出小紅家,用點(diǎn)C表示出學(xué)校的位置;
(2)求小彬家與學(xué)校之間的距離;
(3)如果小明跑步的速度是250m/min,那么小明跑步一共用了多長(zhǎng)時(shí)間?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在平面直角坐標(biāo)中,點(diǎn)A的坐標(biāo)為(1,﹣2),點(diǎn)B的坐標(biāo)為(3,﹣1),二次函數(shù)y=﹣x2的圖象為l1 .
(1)平移拋物線l1 , 使平移后的拋物線經(jīng)過點(diǎn)A,但不過點(diǎn)B.
①滿足此條件的函數(shù)解析式有個(gè).
②寫出向下平移且經(jīng)點(diǎn)A的解析式 .
(2)平移拋物線l1 , 使平移后的拋物線經(jīng)過A,B兩點(diǎn),所得的拋物線l2 , 如圖②,求拋物線l2的函數(shù)解析式及頂點(diǎn)C的坐標(biāo),并求△ABC的面積.
(3)在y軸上是否存在點(diǎn)P,使S△ABC=S△ABP?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y1=x2+mx+n的圖象經(jīng)過點(diǎn)P(﹣3,1),對(duì)稱軸是經(jīng)過(﹣1,0)且平行于y軸的直線.
(1)求m,n的值.
(2)如圖,一次函數(shù)y2=kx+b的圖象經(jīng)過點(diǎn)P,與x軸相交于點(diǎn)A,與二次函數(shù)的圖象相交于另一點(diǎn)B,點(diǎn)B在點(diǎn)P的右側(cè),PA:PB=1:5,求一次函數(shù)的表達(dá)式.
(3)直接寫出y1>y2時(shí)x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,OA是⊙M的直徑,點(diǎn)B在x軸上,連接AB交⊙M于點(diǎn)C.
(1)若點(diǎn)A的坐標(biāo)為(0,2),∠ABO=30°,求點(diǎn)B的坐標(biāo).
(2)若D為OB的中點(diǎn),求證:直線CD是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,D是BC邊上的一點(diǎn),E是AD的中點(diǎn),過A點(diǎn)作BC的平行線交CE的延長(zhǎng)線于F,且AF=BD,連接BF.
(1)求證:D是BC的中點(diǎn).
(2)如果AB=AC,試判斷四邊形AFBD的形狀,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=5cm,BC=12cm,將△ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)60°,得到△BDE,連接DC交AB于點(diǎn)F,則△ACF與△BDF的周長(zhǎng)之和為 cm.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com