【題目】已知二次函數(shù)y=﹣x2+2x.
(1)在給定的平面直角坐標(biāo)系中,畫出這個(gè)函數(shù)的圖象;
(2)根據(jù)圖象,寫出當(dāng)y<0時(shí),x的取值范圍;
(3)若將此圖象沿x軸向左平移3個(gè)單位,再沿y軸向下平移1個(gè)單位,請(qǐng)直接寫出平移后圖象所對(duì)應(yīng)的函數(shù)關(guān)系式.
【答案】(1)見解析;(2) x<0或x>2;(3) y=(x+2)2(或y=﹣x2﹣4x﹣4).
【解析】
(1)確定出頂點(diǎn)坐標(biāo)和與x軸的交點(diǎn)坐標(biāo),然后作出大致函數(shù)圖象即可;
(2)根據(jù)函數(shù)圖象寫出二次函數(shù)圖象在x軸下方的部分的x的取值范圍;
(3)根據(jù)向左平移橫坐標(biāo)減,向下平移縱坐標(biāo)減求出平移后的二次函數(shù)圖象的頂點(diǎn)坐標(biāo),然后利用頂點(diǎn)式形式寫出即可.
(1)函數(shù)圖象如圖所示;
(2)當(dāng)y<0時(shí),x的取值范圍:x<0或x>2;
(3)∵圖象沿x軸向左平移3個(gè)單位,再沿y軸向下平移1個(gè)單位,
∴平移后的二次函數(shù)圖象的頂點(diǎn)坐標(biāo)為(﹣2,0),
∴平移后圖象所對(duì)應(yīng)的函數(shù)關(guān)系式為:y=(x+2)2.(或y=﹣x2﹣4x﹣4).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于反比例函數(shù)y=(k≠0),下列所給的四個(gè)結(jié)論中,正確的是( )
A. 若點(diǎn)(3,6)在其圖象上,則(﹣3,6)也在其圖象上
B. 當(dāng)k>0時(shí),y隨x的增大而減小
C. 過圖象上任一點(diǎn)P作x軸、y軸的線,垂足分別A、B,則矩形OAPB的面積為k
D. 反比例函數(shù)的圖象關(guān)于直線y=﹣x成軸對(duì)稱
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們知道,解一元一次方程,可以把它轉(zhuǎn)化為兩個(gè)一元一次方程來解,其實(shí)用“轉(zhuǎn)化”的數(shù)學(xué)思想,我們還可以解一些新的方程,例如一元三次方程x3+x2﹣2x=0,可以通過因式分解把它轉(zhuǎn)化為x(x2+x﹣2)=0,解方程x=0和x2+x﹣2=0,可得方程x3+x2﹣2x=0的解.
(1)方程x3+x2﹣2x=0的解是x1=0,x2= ,x3= .
(2)用“轉(zhuǎn)化”思想求方程=x的解.
(3)如圖,已知矩形草坪ABCD的長(zhǎng)AD=14m,寬AB=12m,小華把一根長(zhǎng)為28m的繩子的一端固定在點(diǎn)B處,沿草坪邊沿BA、AD走到點(diǎn)P處,把長(zhǎng)繩PB段拉直并固定在點(diǎn)P處,然后沿草坪邊沿PD、DC走到點(diǎn)C處,把長(zhǎng)繩剩下的一段拉直,長(zhǎng)繩的另一端恰好落在點(diǎn)C處,求AP的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知⊙O是以AB為直徑的△ABC的外接圓,過點(diǎn)A作⊙O的切線交OC的延長(zhǎng)線于點(diǎn)D,交BC的延長(zhǎng)線于點(diǎn)E.
(1)求證:∠DAC=∠DCE;
(2)若AB=2,sin∠D=,求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解下列方程:
(1)解方程::x2﹣6x﹣5=0; (2)解方程:2(x﹣1)2=3x﹣3;
(3)求拋物線的頂點(diǎn)坐標(biāo)、對(duì)稱軸和它與坐標(biāo)軸的交點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】英國(guó)曼徹斯特大學(xué)物理學(xué)家安德烈·蓋姆和康斯坦丁·諾沃肖洛夫,用微機(jī)械剝離法成功從石墨中分離出石墨烯,榮獲了諾貝爾物理學(xué)獎(jiǎng).石墨烯具有優(yōu)異的光學(xué)、電學(xué)、 力學(xué)特性,在材料學(xué)、微納加工、能源、生物醫(yī)學(xué)和藥物傳遞等方面具有重要的應(yīng)用前景,被認(rèn)為是一種未來革命性的材料. 其理論厚度僅 0.000 000 000 34 m,將這個(gè)數(shù)據(jù)用科學(xué)記數(shù)法表示為_______m.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,將△DEF與△ABC重合在一起,△ABC不動(dòng),△DEF運(yùn)動(dòng),并滿足:點(diǎn)E在邊BC上沿B到C的方向運(yùn)動(dòng),且DE始終經(jīng)過點(diǎn)A,EF與AC交于M點(diǎn).
(1)求證:△ABE∽△ECM;
(2)探究:在△DEF運(yùn)動(dòng)過程中,重疊部分能否構(gòu)成等腰三角形?若能,求出BE的長(zhǎng);若不能,請(qǐng)說明理由;
(3)當(dāng)線段BE為何值時(shí),線段AM最短,最短是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】沿圖1長(zhǎng)方形中的虛線平均分成四塊小長(zhǎng)方形,然后按圖2的形狀拼成一個(gè)正方形.
(1)圖2中的陰影部分的面積為 .
(2)觀察圖2,請(qǐng)你寫出代數(shù)式(m+n)2、(m-n)2、mn之間的等量關(guān)系式.
(3)根據(jù)你得到的關(guān)系式解答下列問題:若x+y=-6,xy=5,則x–y= .
(4)實(shí)際上有許多代數(shù)恒等式可以用圖形的面積來表示.如圖3,它表示了(2m+n)(m+n)=2m2+3mn+n2.試畫出一個(gè)幾何圖形,使它的面積能表示(m+n)(m+3n)=m2+4mn+3n2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明和爸爸從家步行去公園,爸爸先出發(fā)一直勻速前行,小明后出發(fā).家到公園的距離為2500 m,如圖是小明和爸爸所走的路程s(m)與步行時(shí)間t(min)的函數(shù)圖象.
(1)直接寫出小明所走路程s與時(shí)間t的函數(shù)關(guān)系式;
(2)小明出發(fā)多少時(shí)間與爸爸第三次相遇?
(3)在速度都不變的情況下,小明希望比爸爸早20 min到達(dá)公園,則小明在步行過程中停留的時(shí)間需作怎樣的調(diào)整?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com