【題目】已知:如圖,在□ABCD中,E為邊CD的中點(diǎn),聯(lián)結(jié)AE并延長(zhǎng),交邊BC的延長(zhǎng)線于點(diǎn)F.
(1)求證:四邊形ACFD是平行四邊形;
(2)如果∠B+∠AFB=90°,求證:四邊形ACFD是菱形.
【答案】(1)(2)見解析
【解析】(1)根據(jù)平行四邊形的性質(zhì)證出∠ADC=∠FCD,然后再證明△ADE≌△FCE可得AD=FC,根據(jù)一組對(duì)邊平行且相等的四邊形是平行四邊形可得結(jié)論;
(2)根據(jù)∠B+∠AFB=90°可得∠BAF=90°,根據(jù)平行四邊形對(duì)邊平行可得AB∥CD,利用平行線的性質(zhì)可得∠CEF=∠BAF=90°,再根據(jù)對(duì)角線互相垂直的平行四邊形是菱形可得結(jié)論.
證明:(1)在□ABCD中,AD∥BF.
∴∠ADC=∠FCD.
∵E為CD的中點(diǎn),
∴DE=CE.
在△ADE和△FCE中,,
∴△ADE≌△FCE(ASA)
∴AD=FC.
又∵AD∥FC,
∴四邊形ACFD是平行四邊形.
(2)在△ABF中,
∵∠B+∠AFB=90°,
∴∠BAF=90°.
又∵四邊形ABCD是平行四邊形,
∴AB∥CD,
∴∠CEF=∠BAF=90°,
∵四邊形ACDF是平行四邊形,
∴四邊形ACDF是菱形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線y=kx+b(k≠0)過點(diǎn)(1,2)
(1)填空:b= (用含k代數(shù)式表示);
(2)將此直線向下平移2個(gè)單位,設(shè)平移后的直線交x于點(diǎn)A,交y于點(diǎn)B,x軸上另有點(diǎn)C(1+k,0),使得△ABC的面積為2,求k值;
(3)當(dāng)1≤x≤3,函數(shù)值y總大于零,求k取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列調(diào)查中,不適合作普查的是( )
A.準(zhǔn)確了解全國(guó)人口狀況B.調(diào)查你班每位同學(xué)穿鞋的尺碼
C.學(xué)校招聘教師,對(duì)應(yīng)聘人員面試.D.調(diào)查一批燈泡的使用壽命
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在梯形ABCD中,AD∥BC,AB⊥BC,.E是邊AB的中點(diǎn),聯(lián)結(jié)DE、CE,且DE⊥CE.設(shè)AD=x,BC=y.
(1)如果∠BCD=60°,求CD的長(zhǎng);
(2)求y關(guān)于x的函數(shù)解析式,并寫出自變量x的取值范圍;
(3)聯(lián)結(jié)BD.如果△BCD是以邊CD為腰的等腰三角形,求x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列運(yùn)算中,正確的是( )
A.4x-x=2x
B.2x·x4=x5
C.x2y÷y=x2
D.(-3x)3=-9x3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列計(jì)算正確的是( 。
A. a2a3=a6 B. 2a+3b=5ab C. a8÷a2=a6 D. (a2b)2=a4b
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說法正確的個(gè)數(shù)為( )
(1)用一張像底片沖出來(lái)的10張一寸照片是全等形
(2)我國(guó)國(guó)旗商店四顆小五角星是全等形
(3)所有的正六邊形是全等形
(4)面積相等的兩個(gè)正方形是全等形
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列運(yùn)算正確的是( )
A.a3a4=a12
B.3a22a3=6a6
C.(﹣2x2y)3=﹣8x6y3
D.(﹣3a2b3)2=6a4b6
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下面材料:
點(diǎn)A、B在數(shù)軸上分別表示實(shí)數(shù)a、b,A、B兩點(diǎn)之間的距離表示為∣AB∣.
當(dāng)A、B兩點(diǎn)中有一點(diǎn)在原點(diǎn)時(shí),不妨設(shè)點(diǎn)A在原點(diǎn),如圖1,∣AB∣=∣OB∣=∣b∣=∣a-b∣;
當(dāng)A、B兩點(diǎn)都不在原點(diǎn)時(shí),如圖2,點(diǎn)A、B都在原點(diǎn)的右邊
∣AB∣=∣OB∣-∣OA∣=∣b∣-∣a∣= =∣a-b∣;
如圖3,當(dāng)點(diǎn)A、B都在原點(diǎn)的左邊,
∣AB∣=∣OB∣-∣OA∣=∣b∣-∣a∣==∣a-b∣;
如圖4,當(dāng)點(diǎn)A、B在原點(diǎn)的兩邊,
∣AB∣=∣OB∣+∣OA∣=∣a∣+∣b∣= =∣a-b∣;
回答下列問題:
(1)數(shù)軸上表示1和6的兩點(diǎn)之間的距離是 ,數(shù)軸上表示2和-3的兩點(diǎn)之間的距離是 ;
(2)數(shù)軸上若點(diǎn)A表示的數(shù)是x,點(diǎn)B表示的數(shù)是-4,則點(diǎn)A和B之間的距離是 ,若∣AB∣=3,那么x為 ;
(3)當(dāng)x是 時(shí),代數(shù)式;
(4)若點(diǎn)A表示的數(shù),點(diǎn)B與點(diǎn)A的距離是10,且點(diǎn)B在點(diǎn)A的右側(cè),動(dòng)點(diǎn)P、Q同時(shí)從A、B出發(fā)沿?cái)?shù)軸正方向運(yùn)動(dòng),點(diǎn)P的速度是每秒3個(gè)單位長(zhǎng)度,點(diǎn)Q的速度是每秒個(gè)單位長(zhǎng)度,求運(yùn)動(dòng)幾秒后,點(diǎn)Q與點(diǎn)P 相距1個(gè)單位?(請(qǐng)寫出必要的求解過程)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com