【題目】如圖,BD是△ABC的角平分線,點(diǎn)E,F(xiàn)分別在BC,AB上,且DE∥AB,EF∥AC.
(1)求證:BE=AF;
(2)若∠ABC=60°,BD=12,求DE的長及四邊形ADEF的面積.

【答案】(1)證明:∵DE∥AB,EF∥AC,
∴四邊形ADEF是平行四邊形,
∠ABD=∠BDE,
∴AF=DE,
∵BD是△ABC的角平分線,
∴∠ABD=∠DBE,
∴∠DBE=∠BDE,
∴BE=DE,
∴BE=AF;
(2)解:如圖,過點(diǎn)D作DG⊥AB于點(diǎn)G,過點(diǎn)E作EH⊥BD于點(diǎn)H,
∵∠ABC=60°,BD是∠ABC的平分線,
∴∠ABD=∠EBD=30°,
∴DG=BD=×12=6,
∵BE=DE,
∴BH=DH=BD=6,
∴BE==
∴DE=BE=,
∴四邊形ADEF的面積為:DEDG=

【解析】(1)由DE∥AB,EF∥AC,可證得四邊形ADEF是平行四邊形,∠ABD=∠BDE,又由BD是△ABC的角平分線,易得△BDE是等腰三角形,即可證得結(jié)論;
(2)首先過點(diǎn)D作DG⊥AB于點(diǎn)G,過點(diǎn)E作EH⊥BD于點(diǎn)H,易求得DG與DE的長,繼而求得答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】視線與下列哪種光線不同( 。
A.太陽光線
B.燈光
C.探照燈光
D.臺燈

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】每年的423日是世界讀書日,茗茗想了解她所在學(xué)校八年級學(xué)生課外閱讀的喜好,從八年級隨機(jī)抽取部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成如圖所示的局行統(tǒng)計(jì)圖,調(diào)查要求每人只選取一種喜好的書籍.若選擇漫畫的學(xué)生有60人,選擇其他的學(xué)生有30人,則下列說法中不正確的是( 。

A. 選擇科普的學(xué)生有90 B. 該調(diào)查的樣本容量為300

C. 不能確定選擇小說的人數(shù) D. 漫畫所在扇形圓心角的度數(shù)為72°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,如果當(dāng)x0時(shí),函數(shù)y=kx1(k0)圖象上的點(diǎn)都在直線y=1上方,請寫出一個(gè)符合條件的函數(shù)y=kx1(k0)的表達(dá)式:____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把多項(xiàng)式2x24xy+2y2因式分解的結(jié)果為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A,B,C的坐標(biāo)分別為(1,0),(0,1),(﹣1,0).一個(gè)電動玩具從坐標(biāo)原點(diǎn)0出發(fā),第一次跳躍到點(diǎn)P1 . 使得點(diǎn)P1與點(diǎn)O關(guān)于點(diǎn)A成中心對稱;第二次跳躍到點(diǎn)P2 , 使得點(diǎn)P2與點(diǎn)P1關(guān)于點(diǎn)B成中心對稱;第三次跳躍到點(diǎn)P3 , 使得點(diǎn)P3與點(diǎn)P2關(guān)于點(diǎn)C成中心對稱;第四次跳躍到點(diǎn)P4 , 使得點(diǎn)P4與點(diǎn)P3關(guān)于點(diǎn)A成中心對稱;第五次跳躍到點(diǎn)P5 , 使得點(diǎn)P5與點(diǎn)P4關(guān)于點(diǎn)B成中心對稱;…照此規(guī)律重復(fù)下去,則點(diǎn)P2015的坐標(biāo)為 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從甲、乙、丙、丁四人中選一人參加詩詞大會比賽,經(jīng)過三輪初賽,他們的平均成績都是86分,方差如下表,你認(rèn)為派誰去參賽更合適(

選手

方差

1.5

2.6

3.5

3.68

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象交x軸于AB兩點(diǎn),交y軸于點(diǎn)C,且B(1,0),C(0,3),將BOC繞點(diǎn)O按逆時(shí)針方向旋轉(zhuǎn)90°,C點(diǎn)恰好與A重合.

(1)求該二次函數(shù)的解析式;

(2)若點(diǎn)P為線段AB上的任一動點(diǎn),過點(diǎn)PPEAC,交BC于點(diǎn)E,連結(jié)CP,求△PCE面積S的最大值;

(3)設(shè)拋物線的頂點(diǎn)為MQ為它的圖象上的任一動點(diǎn),若△OMQ為以OM為底的等腰三角形,求Q點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列各式中,去括號正確的是( )
A.x+2(y﹣1)=x+2y﹣1
B.x﹣2(y﹣1)=x+2y+2
C.x﹣2(y﹣1)=x﹣2y﹣2
D.x﹣2(y﹣1)=x﹣2y+2

查看答案和解析>>

同步練習(xí)冊答案