【題目】如圖,△ABC中,E為邊BC延長線上一點,∠ABC的平分線與∠ACE的平分線交于點D,若∠A=46°,則∠D的度數(shù)為( )

A.23°B.92°C.44°D.46°

【答案】A

【解析】

先根據(jù)角平分線的定義得到∠1=2,∠3=4,再根據(jù)三角形外角性質(zhì)得∠1+2=3+4+A,則21=23+A,由∠1=3+D,利用等式的性質(zhì)得到∠D= A,然后把∠A的度數(shù)代入計算即可.

各角標(biāo)記如圖,

∵∠ABC的平分線與∠ACE的平分線交于點D,

∴∠1=2,∠3=4,

∵∠ACE=A+ABC,即∠1+2=3+4+A,

21=23+A

∵∠1=3+D,

∴∠D= A= ×46°=23°.故選A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙、丙3名學(xué)生各自隨機選擇到AB 2個書店購書.

1)求甲、乙2名學(xué)生在不同書店購書的概率;

2)求甲、乙、丙3名學(xué)生在同一書店購書的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在同一坐標(biāo)系中,一次函數(shù)y=﹣mx+n2與二次函數(shù)y=x2+m的圖象可能是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形ABCD,點M是邊BA延長線上的動點(不與點A重合),且AM<AB,△CBE由DAM平移得到.若過點E作EHAC,H為垂足,則有以下結(jié)論:點M位置變化,使得DHC=60°時,2BE=DM;無論點M運動到何處,都有DM=HM;③無論點M運動到何處,CHM一定大于135°.其中正確結(jié)論的序號為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,AB=8,點E、F分別在ADAB上,AE=3,AF=4

1)點P在邊BC上運動、四邊形EFPH是平行四邊形,連接DH

①當(dāng)四邊形FPHE是菱形時,線段BP=_____;

②當(dāng)點P在邊BC上運動時,△DEH的面積會不會變化?若變化,求其最大值;若不變,求出它的值;

③當(dāng)△DEH是等腰三角形時,求BP的長;

2)若點E沿E-D-C向終點C運動,點F沿F-B-C終點C運動,速度分別為每秒3個單位長度和每秒4個單位長度,當(dāng)其中一個點到達終點C時,另一個點也停止運動,求EF的中點O的運動路徑長(要求寫出簡略的計算過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=-x2-2x+3的圖象與x軸交于A、B兩點(點A在點B的左邊),與y軸交于點C,點D為拋物線的頂點.

(1)求點A、B、C的坐標(biāo);

(2)點M為線段AB上一點(點M不與點A、B重合),過點M作x軸的垂線,與直線AC交于點E,與拋物線交于點P,過點P作PQ∥AB交拋物線于點Q,過點Q作QN⊥x軸于點N,若點P在點Q左邊,當(dāng)矩形PMNQ的周長最大時,求△AEM的面積;

(3)在(2)的條件下,當(dāng)矩形PMNQ的周長最大時,連接DQ,過拋物線上一點F作

y軸的平行線,與直線AC交于點G(點G在點F的上方).若,

求點F的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2008512日,汶川發(fā)生了里氏8.0級地震,給當(dāng)?shù)厝嗣裨斐闪司薮蟮膿p失.某中學(xué)全體師生積極捐款,其中九年級的3個班學(xué)生的捐款金額如下表:

老師統(tǒng)計時不小心把墨水滴到了其中兩個班級的捐款金額上,但他知道下面三條信息:

信息一:這三個班的捐款總金額是7700元;

信息二:二班的捐款金額比三班的捐款金額多300元;

信息三:一班學(xué)生平均每人捐款的金額大于48元,小于51元.

請根據(jù)以上信息,幫助老師解決:

1)二班與三班的捐款金額各是多少元?

2)一班的學(xué)生人數(shù)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年5月,某校為了了解九年級學(xué)生的體育備考情況,隨機抽取了部分學(xué)生進行模擬測試,現(xiàn)將學(xué)生按模擬測試成績m分成ABC、D四等(A等:90≤m≤100B等:80≤m90,C等:60≤m80,D等:m60),并繪制出了如圖的兩幅不完整的統(tǒng)計圖:

1)本次模擬測試共抽取了多少個學(xué)生?

2)將圖乙中條形統(tǒng)計圖補充完整;

3)如果該校今年有九年級學(xué)生1000人,試估計其中D等學(xué)生的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料:

基本不等式a0b0),當(dāng)且僅當(dāng)ab時等號成立,它是解決最值問題的有力工具.

例如:在x0的條件下,當(dāng)x為何值時,x+有最小值,最小值是多少?

解:x0,0∴,即≥2,≥2

當(dāng)且僅當(dāng)x,即x1時,x+有最小值,最小值為2

請根據(jù)閱讀材料解答下列問題:

1)已知x0,則當(dāng)x____時,代數(shù)式3x+的最小值為______

2)已知a0,b0,a2+b2=7,則ab的最大值為_____

3)已知矩形面積為9,求矩形周長的最小值.

查看答案和解析>>

同步練習(xí)冊答案