已知拋物線y=x2+bx+c經(jīng)過(2,-1)和(4,3)兩點.
(1)求出這個拋物線的解析式;
(2)將該拋物線向右平移1個單位,再向下平移3個單位,得到的新拋物線解析式為             .
(1);(2)

試題分析:(1)將(2,-1)、(4,3)代入y=x2+bx+c,即可解出b、c的值,從而得到函數(shù)的解析式;
(2)根據(jù)平移規(guī)律,將函數(shù)的頂點式進(jìn)行變化,得到函數(shù)解析式,再展成一般式即可.
試題解析:(1) ∵拋物線過(2,-1)和(4 , 3)兩點,


∴這個拋物線的解析式為.
(2)新拋物線的解析式為
考點: 1.待定系數(shù)法求二次函數(shù)解析式;2.二次函數(shù)的性質(zhì);3.二次函數(shù)圖象與幾何變換.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)y=x2+bx+c中,函數(shù)y與自變量x的部分對應(yīng)值如下表:
x

-1
0
  1
2
3
4

y

8
3
0
-1
0
3

(1)求該二次函數(shù)的解析式;
(2)當(dāng)x為何值時,y有最小值,最小值是多少?
(3)若A(m,y1),B(m+2,y2)兩點都在該函數(shù)的圖象上,計算當(dāng)m 取何值時,?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某批發(fā)商以每件50元的價格購進(jìn)400件T恤.若以單價70元銷售,預(yù)計可售出200件.批發(fā)商的銷售策略是:第一個月為增加銷售量,降價銷售,經(jīng)過市場調(diào)查,單價每降低0.5元,可多售出5件,但最低單價不低于購進(jìn)的價格;第一個月結(jié)束后,將剩余的T恤一次性清倉銷售,清倉時單價為40元.設(shè)第一個月單價降低x元.
(1)根據(jù)題意,完成下表:
 
每件T恤的利潤(元)
銷售量(件)
第一個月
 
 
清倉時
 
 
(2)T恤的銷售單價定為多少元時,該批發(fā)商可獲得最大利潤?最大利潤為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

今年,在端午節(jié)前夕,三位同學(xué)到某超市調(diào)研一種進(jìn)價為2元的粽子的銷售情況.(售價不低于進(jìn)價).請根據(jù)小麗提供的信息,解答小華和小明提出的問題.

認(rèn)真閱讀上面三位同學(xué)的對話,請根據(jù)小麗提供的信息.
(1)解答小華的問題;
(2)解答小明的問題.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,某居民小區(qū)要在一塊一邊靠墻(墻長15m)的空地上修建一個矩形花園ABCD,花園的一邊靠墻,另三邊用總長為40m的柵欄圍成,若花園的BC邊長為x米,花園的面積為y(m2

(1)求y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)滿足條件的花園面積能達(dá)到200m2嗎?若能,求出此時x的值;若不能,說明理由;
(3)請結(jié)合題意,判斷當(dāng)x取何值時,花園的面積最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:二次函數(shù)的圖象開口向上,并且經(jīng)過原點.
(1)求的值;
(2)用配方法求出這個二次函數(shù)圖象的頂點坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線y=2x2﹣2與x軸交于A,B兩點(點A在點B的左側(cè)),與y軸交于點C.

(1)寫出以A,B,C為頂點的三角形面積;
(2)過點E(0,6)且與x軸平行的直線l1與拋物線相交于M、N兩點(點M在點N的左側(cè)),以MN為一邊,拋物線上的任一點P為另一頂點做平行四邊形,當(dāng)平行四邊形的面積為8時,求出點P的坐標(biāo);
(3)過點D(m,0)(其中m>1)且與x軸垂直的直線l2上有一點Q(點Q在第一象限),使得以Q,D,B為頂點的三角形和以B,C,O為頂點的三角形相似,求線段QD的長(用含m的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

二次函數(shù)y=2(x﹣1)2+3的圖象的頂點坐標(biāo)是            .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

次函數(shù)取最大值時,x=                  .

查看答案和解析>>

同步練習(xí)冊答案