【題目】三角形的下列四種線段中一定能將三角形分成面積相等的兩部分的是( )
A.角平分線
B.中位線
C.高
D.中線
【答案】D
【解析】解:( 1 ) 三角形的角平分線把三角形分成兩部分,這兩部分的面積比分情況而定;
( 2 )
三角形的中位線把三角形分成兩部分,這兩部分的面積經(jīng)計(jì)算得:
三角形面積為梯形面積的;
( 3 )
三角形的高把三角形分成兩部分,這兩部分的面積比分情況而定;
( 4 )
三角形的中線AD把三角形分成兩部分,△ABD的面積為BDAE,△ACD面積為CDAE;因?yàn)锳D為中線,所以D為BC中點(diǎn),所以BD=CD,所以△ABD的面積等于△ACD的面積。
∴三角形的中線把三角形分成面積相等的兩部分。
所以答案是:D。
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解三角形的“三線”的相關(guān)知識(shí),掌握1、三角形角平分線的三條角平分線交于一點(diǎn)(交點(diǎn)在三角形內(nèi)部,是三角形內(nèi)切圓的圓心,稱為內(nèi)心);2、三角形中線的三條中線線交于一點(diǎn)(交點(diǎn)在三角形內(nèi)部,是三角形的幾何中心,稱為中心);3、三角形的高線是頂點(diǎn)到對(duì)邊的距離;注意:三角形的中線和角平分線都在三角形內(nèi).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知數(shù)軸上點(diǎn)A表示的數(shù)為-6,點(diǎn)B在數(shù)軸上A點(diǎn)右側(cè),則AB=14,動(dòng)點(diǎn)M從點(diǎn)A出發(fā),以每秒5個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(t>O)秒.
(1)寫出數(shù)軸上點(diǎn)B表示的數(shù) , 點(diǎn)M表示的數(shù) (用含t的式子表示).
(2)動(dòng)點(diǎn)N從點(diǎn)B出發(fā),以每秒3個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),若點(diǎn)M,N同時(shí)出發(fā),問點(diǎn)M運(yùn)動(dòng)多少秒時(shí)追上點(diǎn)N?
(3)若P為AM的中點(diǎn),F(xiàn)為MB的中點(diǎn),點(diǎn)M在運(yùn)動(dòng)過程中,線段_PF的長(zhǎng)度是否發(fā)生變化?若變化,請(qǐng)說明理由;若不變,請(qǐng)求出線段PF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校需要添置某種教學(xué)儀器,現(xiàn)有兩種添置方法方案1:到廠商家購(gòu)買,每件需要8元和一次性的運(yùn)費(fèi)2000元;方案2:學(xué)校自己制作,每件4元,另外購(gòu)置制作工具的費(fèi)用4200元,請(qǐng)問添置多少件這種教學(xué)儀器時(shí)兩種方案所需費(fèi)用恰好一樣多.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠BAC=90°,過點(diǎn)B的直線MN∥AC,D為BC邊上一點(diǎn),連接AD,作DE⊥AD交MN于點(diǎn)E,連接AE.
(1)如圖①,當(dāng)∠ABC=45°時(shí),求證:AD=DE;
(2)如圖②,當(dāng)∠ABC=30°時(shí),線段AD與DE有何數(shù)量關(guān)系?并請(qǐng)說明理由;
(3)當(dāng)∠ABC=α?xí)r,請(qǐng)直接寫出線段AD與DE的數(shù)量關(guān)系.(用含α的三角函數(shù)表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形ABCD中,對(duì)角線AC與BD交于點(diǎn)O;在Rt△PMN中,∠MPN=90°.
(1)如圖1,若點(diǎn)P與點(diǎn)O重合且PM⊥AD、PN⊥AB,分別交AD、AB于點(diǎn)E、F,請(qǐng)直接寫出PE與PF的數(shù)量關(guān)系;
(2)將圖1中的Rt△PMN繞點(diǎn)O順時(shí)針旋轉(zhuǎn)角度α(0°<α<45°).
①如圖2,在旋轉(zhuǎn)過程中(1)中的結(jié)論依然成立嗎?若成立,請(qǐng)證明;若不成立,請(qǐng)說明理由;
②如圖2,在旋轉(zhuǎn)過程中,當(dāng)∠DOM=15°時(shí),連接EF,若正方形的邊長(zhǎng)為2,請(qǐng)直接寫出線段EF的長(zhǎng);
③如圖3,旋轉(zhuǎn)后,若Rt△PMN的頂點(diǎn)P在線段OB上移動(dòng)(不與點(diǎn)O、B重合),當(dāng)BD=3BP時(shí),猜想此時(shí)PE與PF的數(shù)量關(guān)系,并給出證明;當(dāng)BD=mBP時(shí),請(qǐng)直接寫出PE與PF的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1所示,在正方形ABCD和正方形CGEF中,點(diǎn)B、C、G在同一條直線上,M是線段AE的中點(diǎn),DM的延長(zhǎng)線交EF于點(diǎn)N,連接FM,易證:DM=FM,DM⊥FM(無需寫證明過程)
(1)如圖2,當(dāng)點(diǎn)B、C、F在同一條直線上,DM的延長(zhǎng)線交EG于點(diǎn)N,其余條件不變,試探究線段DM與FM有怎樣的關(guān)系?請(qǐng)寫出猜想,并給予證明;
(2)如圖3,當(dāng)點(diǎn)E、B、C在同一條直線上,DM的延長(zhǎng)線交CE的延長(zhǎng)線于點(diǎn)N,其余條件不變,探究線段DM與FM有怎樣的關(guān)系?請(qǐng)直接寫出猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】第一次模擬試后,數(shù)學(xué)科陳老師把一班的數(shù)學(xué)成績(jī)制成如圖的統(tǒng)計(jì)圖,并給了幾個(gè)信息:①前兩組的頻率和是0.14;②第一組的頻率是0.02;③自左到右第二、三、四組的頻數(shù)比為3:9:8,然后布置學(xué)生(也請(qǐng)你一起)結(jié)合統(tǒng)計(jì)圖完成下列問題:
(1)全班學(xué)生是多少人?
(2)成績(jī)不少于90分為優(yōu)秀,那么全班成績(jī)的優(yōu)秀率是多少?
(3)若不少于100分可以得到A+等級(jí),則小明得到A+的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在學(xué)習(xí)了圖形的旋轉(zhuǎn)知識(shí)后,數(shù)學(xué)興趣小組的同學(xué)們又進(jìn)一步對(duì)圖形旋轉(zhuǎn)前后的線段之間、角之間的關(guān)系進(jìn)行了探究.
(一)嘗試探究
如圖1,在四邊形ABCD中,AB=AD,∠BAD=60°,∠ABC=∠ADC=90°,點(diǎn)E、F分別在線段BC、CD上,∠EAF=30°,連接EF.
(1)如圖2,將△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°后得到△A′B′E′(A′B′與AD重合),請(qǐng)直接寫出∠E′AF= 度,線段BE、EF、FD之間的數(shù)量關(guān)系為 .
(2)如圖3,當(dāng)?shù)c(diǎn)E、F分別在線段BC、CD的延長(zhǎng)線上時(shí),其他條件不變,請(qǐng)?zhí)骄烤段BE、EF、FD之間的數(shù)量關(guān)系,并說明理由.
(二)拓展延伸
如圖4,在等邊△ABC中,E、F是邊BC上的兩點(diǎn),∠EAF=30°,BE=1,將△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°得到△A′B′E′(A′B′與AC重合),連接EE′,AF與EE′交于點(diǎn)N,過點(diǎn)A作AM⊥BC于點(diǎn)M,連接MN,求線段MN的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】與 在平面直角坐標(biāo)系中的位置如圖.
(1)分別寫出下列各點(diǎn)的坐標(biāo):
; ; ;
(2)說明 由 經(jīng)過怎樣的平移得到:
.
(3)若點(diǎn) ( , )是 內(nèi)部一點(diǎn),則平移后 內(nèi)的
對(duì)應(yīng)點(diǎn) 的坐標(biāo)為;
(4)求 的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com