已知二次函數(shù)y=
1
2
x2+bx+c的圖象經(jīng)過點(diǎn)A(-3,6),并與x軸交于點(diǎn)B(-1,0)和點(diǎn)C,頂點(diǎn)為P.
(1)求這個(gè)二次函數(shù)的解析式,并在下面的坐標(biāo)系中畫出該二次函數(shù)的圖象;
(2)設(shè)D為線段OC上的一點(diǎn),滿足∠DPC=∠BAC,求點(diǎn)D的坐標(biāo);
(3)在x軸上是否存在一點(diǎn)M,使以M為圓心的圓與AC、PC所在的直線及y軸都相切?如果存在,請求出點(diǎn)M的坐標(biāo);若不存在,請說明理由.
(1)∵二次函數(shù)y=
1
2
x2+bx+c的圖象過點(diǎn)A(-3,6),B(-1,0),
9
2
-3b+c=6
1
2
-b+c=0
,
解得
b=-1
c=-
3
2

∴這個(gè)二次函數(shù)的解析式為:
y=
1
2
x2-x-
3
2
.(4分)
由解析式可求P(1,-2),C(3,0),(5分)
畫出二次函數(shù)的圖象;(6分)

(2)解法一:
易證:∠ACB=∠PCD=45°,
又已知:∠DPC=∠BAC,
∴△DPC△BAC,(8分)
DC
BC
=
PC
AC
,
易求AC=6
2
,PC=2
2
,BC=4,
∴DC=
4
3

∴OD=3-
4
3
=
5
3
,
∴D(
5
3
,0).(10分)
解法二:過A作AE⊥x軸,垂足為E,
設(shè)拋物線的對稱軸交x軸于F,
亦可證△AEB△PFD,(8分)
PE
PF
=
EB
FD
,
易求:AE=6,EB=2,PF=2,
∴FD=
2
3
,
∴OD=
2
3
+1=
5
3

∴D(
5
3
,0);(10分)

(3)存在.
①過M作MH⊥AC,MG⊥PC垂足分別為H、G,設(shè)AC交y軸于S,CP的延長線交y軸于T,
∵△SCT是等腰直角三角形,M是△SCT的內(nèi)切圓圓心,
∴MG=MH=OM,(11分)
又∵M(jìn)C=
2
OM且OM+MC=OC,
2
OM+OM=3,
得OM=3
2
-3,
∴M(3
2
-3,0)(12分)
②在x軸的負(fù)半軸上,存在一點(diǎn)M′,
同理OM′+OC=M′C,OM′+OC=
2
OM′
得OM′=3
2
+3
∴M′(-3
2
-3,0)
(14分)
即在x軸上存在滿足條件的兩個(gè)點(diǎn).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,平面直角坐標(biāo)系中,點(diǎn)A、B、C在x軸上,點(diǎn)D、E在y軸上,OA=OD=2,OC=OE=4,B為線段OA的中點(diǎn),直線AD與經(jīng)過B、E、C三點(diǎn)的拋物線交于F、G兩點(diǎn),與其對稱軸交于M,點(diǎn)P為線段FG上一個(gè)動點(diǎn)(與F、G不重合),PQy軸與拋物線交于點(diǎn)Q.
(1)求經(jīng)過B、E、C三點(diǎn)的拋物線的解析式;
(2)判斷△BDC的形狀,并給出證明;當(dāng)P在什么位置時(shí),以P、O、C為頂點(diǎn)的三角形是等腰三角形,并求出此時(shí)點(diǎn)P的坐標(biāo);
(3)若拋物線的頂點(diǎn)為N,連接QN,探究四邊形PMNQ的形狀:①能否成為菱形;②能否成為等腰梯形?若能,請直接寫出點(diǎn)P的坐標(biāo);若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,已知直線y=
1
2
x與拋物線y=ax2+b(a≠0)交于A(-4,-2),B(6,3)兩點(diǎn).拋物線與y軸的交點(diǎn)為C.
(1)求這個(gè)拋物線的解析式;
(2)在拋物線上存在點(diǎn)M,是△MAB是以AB為底邊的等腰三角形,求點(diǎn)M的坐標(biāo);
(3)在拋物線上是否存在點(diǎn)P使得△PAC的面積是△ABC面積的
3
4
?若存在,試求出此時(shí)點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知y=x2-ax+a+2與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)D(0,8),直線CD平行于x軸,交拋物線于另一點(diǎn)C,動點(diǎn)P以每秒2個(gè)單位長度的速度從點(diǎn)C出發(fā),沿C?D運(yùn)動,同時(shí),點(diǎn)Q以每秒1個(gè)單位長度的速度從點(diǎn)A出發(fā),沿A?B運(yùn)動,連接PQ,CB,設(shè)點(diǎn)P的運(yùn)動時(shí)間t秒.(0<t<2).
(1)求a的值;
(2)當(dāng)t為何值時(shí),PQ平行于y軸;
(3)當(dāng)四邊形PQBC的面積等于14時(shí),求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線的頂點(diǎn)為(0,4)且與x軸交于(-2,0),(2,0).

(1)直接寫出拋物線解析式;
(2)如圖,將拋物線向右平移k個(gè)單位,設(shè)平移后拋物線的頂點(diǎn)為D,與x軸的交點(diǎn)為A、B,與原拋物線的交點(diǎn)為P.
①當(dāng)直線OD與以AB為直徑的圓相切于E時(shí),求此時(shí)k的值;
②是否存在這樣的k值,使得點(diǎn)O、P、D三點(diǎn)恰好在同一條直線上?若存在,求出k值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

圖1至圖4的正方形霓虹燈廣告牌ABCD都是20×20的等距網(wǎng)格(每個(gè)小方格的邊長均為1個(gè)單位長),其對稱中心為點(diǎn)O.
如圖1,有一個(gè)邊長為6個(gè)單位長的正方形EFGH的對稱中心也是點(diǎn)O,它以每秒1個(gè)單位長的速度由起始位置向外擴(kuò)大(即點(diǎn)O不動,正方形EFGH經(jīng)過一秒由6×6擴(kuò)大為8×8;再經(jīng)過一秒,由8×8擴(kuò)大為10×10;…),直到充滿正方形ABCD,再以同樣的速度逐步縮小到起始時(shí)的大小,然后一直不斷地以同樣速度再擴(kuò)大、再縮小.
另有一個(gè)邊長為6個(gè)單位長的正方形MNPQ從如圖1所示的位置開始,以每秒1個(gè)單位長的速度,沿正方形ABCD的內(nèi)側(cè)邊緣按A→B→C→D→A移動(即正方形MNPQ從點(diǎn)P與點(diǎn)A重合位置開始,先向左平移,當(dāng)點(diǎn)Q與點(diǎn)B重合時(shí),再向上平移,…).
正方形EFGH和正方形MNPQ從如圖1的位置同時(shí)開始運(yùn)動,設(shè)運(yùn)動時(shí)間為x秒,它們的重疊部分面積為y個(gè)平方單位.
(1)當(dāng)正方形MNPQ第一次回到起始位置時(shí),正方形EFGH是否也變化到起始位置?
(2)請你在圖2和圖3中分別畫出x為3秒、18秒時(shí),正方形EFGH和正方形MNPQ的位置及重疊部分(重疊部分用陰影表示),并分別寫出重疊部分的面積;
(3)正方形EFGH第一次充滿正方形ABCD之前(即x≤7時(shí)),何時(shí)正方形EFGH和正方形MNPQ重疊部分的面積為3平方單位.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,矩形ABCD的長AB=4cm,寬AD=2cm.O是AB的中點(diǎn),OP⊥AB,兩半圓的直徑分別為AO與OB.拋物線的頂點(diǎn)是O,關(guān)于OP對稱且經(jīng)過C、D兩點(diǎn),則圖中陰影部分的面積是______cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線y=-x2+mx-m+2.
(Ⅰ)若拋物線與x軸的兩個(gè)交點(diǎn)A、B分別在原點(diǎn)的兩側(cè),并且AB=
5
,試求m的值;
(Ⅱ)設(shè)C為拋物線與y軸的交點(diǎn),若拋物線上存在關(guān)于原點(diǎn)對稱的兩點(diǎn)M、N,并且△MNC的面積等于27,試求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

二次函數(shù)y=x2-mx+3的圖象與x軸的交點(diǎn)如圖所示,根據(jù)圖中信息可得到m的值是______.

查看答案和解析>>

同步練習(xí)冊答案