【題目】學(xué)校數(shù)學(xué)社團(tuán)的同學(xué)們?cè)趯W(xué)生中開(kāi)展了解校訓(xùn)意義的調(diào)查活動(dòng).采取隨機(jī)抽樣的方式進(jìn)行問(wèn)卷調(diào)查.問(wèn)卷調(diào)查的結(jié)果分為、、四類(lèi).類(lèi)表示非常了解;類(lèi)表示比較了解;類(lèi)表示基本了解;類(lèi)表示不太了解.(要求每位同學(xué)必須選并且只能選擇一項(xiàng))統(tǒng)計(jì)數(shù)據(jù)整理如表:

類(lèi)別

頻數(shù)

頻率

20

0.3

11

0.22

4

0.08

1)表中__________;_________

2)根據(jù)表中數(shù)據(jù),求出類(lèi)同學(xué)數(shù)所對(duì)應(yīng)的扇形圓心角為_________度.

3)根據(jù)調(diào)查結(jié)果,請(qǐng)你估計(jì)該校1500名學(xué)生中對(duì)校訓(xùn)非常了解的人數(shù);

4)學(xué)校在開(kāi)展了解校訓(xùn)意義活動(dòng)中,需要從類(lèi)的甲、乙、丙、丁四名同學(xué)中隨機(jī)選取2人參加展示活動(dòng),求恰好選中甲乙兩人的概率?(請(qǐng)用列表法或是樹(shù)狀圖表示)

【答案】115,0.4;(2108;(3600人;(4

【解析】

1)先根據(jù)D類(lèi)的頻數(shù)與頻率求出總頻數(shù),再根據(jù)頻率頻數(shù)總頻數(shù)可得A類(lèi)的頻率,用總頻數(shù)減去A、C、D三類(lèi)的頻數(shù)即可得B類(lèi)的頻數(shù);

2)利用B類(lèi)同學(xué)的頻率乘以即可得;

3非常了解對(duì)應(yīng)的是A類(lèi),利用A類(lèi)的頻率乘以1500即可得;

4)先畫(huà)出樹(shù)狀圖,再得出類(lèi)的甲、乙、丙、丁四名同學(xué)中隨機(jī)選取2人參加展示活動(dòng)的所有可能的結(jié)果,以及恰好選中甲乙兩人的結(jié)果,然后利用概率公式計(jì)算即可.

1)總頻數(shù)為

故答案為:15,

2類(lèi)同學(xué)數(shù)所對(duì)應(yīng)的扇形圓心角為

故答案為:108;

3非常了解對(duì)應(yīng)的是A類(lèi),

(人)

答:該校1500名學(xué)生中對(duì)校訓(xùn)非常了解的人數(shù)為600人;

4)由題意,畫(huà)出樹(shù)狀圖如下所示:

因此,從類(lèi)的甲、乙、丙、丁四名同學(xué)中隨機(jī)選取2人參加展示活動(dòng)的所有可能的結(jié)果共12種結(jié)果,它們每一種結(jié)果出現(xiàn)的可能性都相等,其中,恰好選中甲乙兩人的結(jié)果共2

則所求的概率為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】體育老師為了解本校九年級(jí)女生1分鐘“仰臥起坐”體育測(cè)試項(xiàng)目的達(dá)標(biāo)情況,從該校九年級(jí)136名女生中,隨機(jī)抽取了20名女生,進(jìn)行了1分鐘仰臥起坐測(cè)試,獲得數(shù)據(jù)如下:

收集數(shù)據(jù):抽取20名女生的1分鐘仰臥起坐測(cè)試成績(jī)(個(gè))如下:

 38 46 42 52 55 43 59 46 25 38

 35 45 51 48 57 49 47 53 58 49

1)整理、描述數(shù)據(jù):請(qǐng)你按如下分組整理、描述樣本數(shù)據(jù),把下列表格補(bǔ)充完整:

范圍

人數(shù)

(說(shuō)明:每分鐘仰臥起坐個(gè)數(shù)達(dá)到49個(gè)及以上時(shí)在中考體育測(cè)試中可以得到滿分)

2)分析數(shù)據(jù):樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、滿分率如下表所示:

平均數(shù)

中位數(shù)

滿分率

46.8

47.5

得出結(jié)論:①估計(jì)該校九年級(jí)女生在中考體育測(cè)試中1分鐘“仰臥起坐”項(xiàng)目可以得到滿分的人數(shù);

②該中心所在區(qū)縣的九年級(jí)女生的1分鐘“仰臥起坐”總體測(cè)試成績(jī)?nèi)缦拢?/span>

平均數(shù)

中位數(shù)

滿分率

45.3

49

請(qǐng)你結(jié)合該校樣本測(cè)試成績(jī)和該區(qū)縣總體測(cè)試成績(jī),為該校九年級(jí)女生的1分鐘“仰臥起坐”達(dá)標(biāo)情況做一下評(píng)估.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,在Rt△ABC中,ACB=90°,邊BCx軸上,點(diǎn)B在點(diǎn)C的右側(cè),頂點(diǎn)AAB的中點(diǎn)D在函數(shù)的圖象上.若ABC的面積為12,則k的值為(

A.24B.12C.6D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,A,B是反比例函數(shù)y=在第一象限內(nèi)的圖象上的兩點(diǎn),且A,B兩點(diǎn)的橫坐標(biāo)分別是24,則OAB的面積是(  )

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的對(duì)稱(chēng)軸是直線,與x軸相交于A,B兩點(diǎn)(點(diǎn)B在點(diǎn)A右側(cè)),與y軸交于點(diǎn)C

1)求拋物線的解析式和A,B兩點(diǎn)的坐標(biāo);

2)如圖1,若點(diǎn)P是拋物線上B,C兩點(diǎn)之間的一個(gè)動(dòng)點(diǎn)(不與B,C重合),是否存在點(diǎn)P,使四邊形PBOC的面積最大?若存在,求點(diǎn)P的坐標(biāo)及四邊形PBOC面積的最大值;若不存在,請(qǐng)說(shuō)明理由;

3)如圖2,若點(diǎn)M是拋物線上任意一點(diǎn),過(guò)點(diǎn)My軸的平行線,交直線BC于點(diǎn)N,當(dāng)MN=3時(shí),求點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等腰直角三角形ABC,∠BAC90°,DEBC上的兩點(diǎn),且BDCE,過(guò)D、EDMEN分別垂直AB、AC,垂足為M、N,交與點(diǎn)F,連接AD、AE.其中四邊形AMFN是正方形;ABE≌△ACD;CE2+BD2DE2;當(dāng)∠DAE45°時(shí),AD2DECD.正確結(jié)論有( 。

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,CEABCD的邊AB的垂直平分線,垂足為點(diǎn)OCEDA的延長(zhǎng)線交于點(diǎn)E、連接ACBE,DO,DOAC交于點(diǎn)F,則下列結(jié)論:①四邊形ACBE是菱形;②∠ACD=∠BAE;③AFBE23;④S四邊形AFOESCOD23.其中正確的結(jié)論有(  )個(gè).

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線和拋物線 (n為正整數(shù)).

(1)拋物線與x軸的交點(diǎn)坐標(biāo)為 .頂點(diǎn)坐標(biāo)為 .

(2)當(dāng)n=1時(shí),請(qǐng)解答下列問(wèn)題:

①拋物線與x軸的交點(diǎn)坐標(biāo)為 .頂點(diǎn)坐標(biāo)為 .請(qǐng)寫(xiě)出拋物線y,的一條相同的性質(zhì).

②當(dāng)直線與拋物線y,,共有4個(gè)交點(diǎn)時(shí),求m的取值范圍

(3)若直線y=k(k<0)與拋物線y,共有4個(gè)交點(diǎn),從左至右依次標(biāo)記為點(diǎn)A,B,C,D,當(dāng)AB=BC=CD時(shí),求出k,n之間滿足的關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB//CD,點(diǎn)E是直線AB上的點(diǎn),過(guò)點(diǎn)E的直線l交直線CD于點(diǎn)FEG平分∠BEFCD于點(diǎn)G.在直線l繞點(diǎn)E旋轉(zhuǎn)的過(guò)程中,圖中∠1,∠2的度數(shù)可以分別是(

A.30°,110°B.56°,70°C.70°,40°D.100°,40°

查看答案和解析>>

同步練習(xí)冊(cè)答案