【題目】如圖,正方形ABCD的邊長(zhǎng)為4,E是BC邊的中點(diǎn),點(diǎn)P在射線AD上,過P作PF⊥AE于F,設(shè)PA=x.
(1)求證:△PFA∽△ABE;
(2)若以P,F,E為頂點(diǎn)的三角形也與△ABE相似,試求x的值;
(3)試求當(dāng)x取何值時(shí),以D為圓心,DP為半徑的⊙D與線段AE只有一個(gè)公共點(diǎn).
【答案】(1)證明見解析;(2)滿足條件的x的值為2或5;(3)當(dāng)x=4-或x=4+或8<x≤4+2時(shí),⊙D與線段AE只有一個(gè)公共點(diǎn).
【解析】
(1)根據(jù)正方形的性質(zhì)和PF⊥AE易證三角形相似.
(2)由于對(duì)應(yīng)關(guān)系不確定,所以應(yīng)針對(duì)不同的對(duì)應(yīng)關(guān)系分情況考慮:當(dāng)∠PEF=∠EAB時(shí),則得到四邊形ABEP為矩形,從而求得x的值;當(dāng)∠PEF=∠AEB時(shí),再結(jié)合△PFA∽△ABE,得到等腰△APE.再根據(jù)等腰三角形的三線合一得到F是AE的中點(diǎn),運(yùn)用勾股定理和相似三角形的性質(zhì)進(jìn)行求解.
(3)此題首先應(yīng)針對(duì)點(diǎn)P的位置分為兩種大情況:點(diǎn)P在AD邊上時(shí)或當(dāng)點(diǎn)P在AD的延長(zhǎng)線上時(shí).同時(shí)還要特別注意⊙D與線段AE只有一個(gè)公共點(diǎn),不一定必須相切,只要保證和線段AE只有一個(gè)公共點(diǎn)即可.故求得相切時(shí)的情況和相交,但其中一個(gè)交點(diǎn)在線段AE外的情況即是x的取值范圍.
(1)證明:∵正方形ABCD,
∴AD∥BC.
∴∠ABE=90°.
∴∠PAF=∠AEB.
又∵PF⊥AE,
∴∠PFA=∠ABE=90°.
∴△PFA∽△ABE.
(2)解:情況1,當(dāng)△EFP∽△ABE,且∠PEF=∠EAB時(shí),
則有PE∥AB
∴四邊形ABEP為矩形.
∴PA=EB=2,即x=2.
情況2,當(dāng)△PFE∽△ABE,且∠PEF=∠AEB時(shí),
∵∠PAF=∠AEB,
∴∠PEF=∠PAF.
∴PE=PA.
∵PF⊥AE,
∴點(diǎn)F為AE的中點(diǎn).
∵===,
∴EF=AE=.
∵=,即=,
∴PE=5,即x=5.
∴滿足條件的x的值為2或5.
(3)解:如圖,
作DH⊥AE,則⊙D與線段AE的距離d即為DH的長(zhǎng),可得d=
當(dāng)點(diǎn)P在AD邊上時(shí),⊙D的半徑r=DP=4﹣x;
當(dāng)點(diǎn)P在AD的延長(zhǎng)線上時(shí),⊙D的半徑r=DP=x﹣4;
如圖1時(shí),⊙D與線段AE相切,此時(shí)d=r,即=4-x,∴x=4-;
如圖2時(shí),⊙D與線段AE相切,此時(shí)d=r,即=x-4,∴x=4+;
如圖3時(shí),DA=PD,則PA=x=2DA=8
如圖4時(shí),當(dāng)PD=ED時(shí),
∵DE==2,
∴PA=PD+AD=4+2,
∴當(dāng)x=4-或x=4+或8<x≤4+2時(shí),⊙D與線段AE只有一個(gè)公共點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A1,A2,A3…,An,An+1是直線上的點(diǎn),且OA1=A1A2=A2A3=…AnAn+1=2,分別過點(diǎn)A1,A2,A3…,An,An+1作l1的垂線與直線相交于點(diǎn)B1,B2,B3…,Bn,Bn+1,連接A1B2,B1A2,A2B3,B2A3…,AnBn+1,BnAn+1,交點(diǎn)依次為P1,P2,P3…,Pn,設(shè)△P1A1A2,△P2A2A3,△P3A3A4,…,△PnAnAn+1的面積分別為S1,S2,S3…,Sn,則Sn=______.(用含有正整數(shù)n的式子表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示是二次函數(shù)y=ax2+bx+c(a≠0)圖象的一部分,直線x=﹣1是對(duì)稱軸,有下列判斷:①b﹣2a=0,②4a﹣2b+c<0,③a﹣b+c=﹣9a,④若(﹣3,y1),(,y2)是拋物線上的兩點(diǎn),則y1<y2.其中正確的是( 。
A. ①②③B. ①③C. ①④D. ①③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸的交點(diǎn)的橫坐標(biāo)分別為-1,3,則下列結(jié)論正確的個(gè)數(shù)有( )①ac<0;②2a+b=0;③4a+2b+c>0;④對(duì)于任意x均有ax2+bx≥a+b.
A.1 B.2 C.3 D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,若干個(gè)全等的正五邊形排成環(huán)狀,圖中所示的是前3個(gè)正五邊形,要完成這一圓環(huán)還需正五邊形的個(gè)數(shù)為( 。
A. 10 B. 9 C. 8 D. 7
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線x,點(diǎn)A1坐標(biāo)為(1,0),過點(diǎn)A1作x軸的垂線交直線于點(diǎn)B1,以原點(diǎn)O為圓心,OB1長(zhǎng)為半徑畫弧交x軸于點(diǎn)A2;再過點(diǎn)A2作x軸的垂線交直線于點(diǎn)B2,以原點(diǎn)O為圓心,OB2長(zhǎng)為半徑畫弧交x軸于點(diǎn)A3,…,按此做法進(jìn)行下去,點(diǎn)A4的坐標(biāo)為______,點(diǎn)An______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABD是⊙O的內(nèi)接三角形,E是弦BD的中點(diǎn),點(diǎn)C是⊙O外一點(diǎn)且∠DBC=∠A,連接OE延長(zhǎng)與圓相交于點(diǎn)F,與BC相交于點(diǎn)C.
(1)求證:BC是⊙O的切線;
(2)若⊙O的半徑為6,BC=8,求弦BD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在長(zhǎng)方形ABCD中,AB=12cm,BC=10cm,點(diǎn)P從A出發(fā),沿A→B→C→D的路線運(yùn)動(dòng),到D停止;點(diǎn)Q從D點(diǎn)出發(fā),沿D→C→B→A路線運(yùn)動(dòng),到A點(diǎn)停止.若P、Q兩點(diǎn)同時(shí)出發(fā),速度分別為每秒lcm、2cm,a秒時(shí)P、Q兩點(diǎn)同時(shí)改變速度,分別變?yōu)槊棵?/span>2cm、cm(P、Q兩點(diǎn)速度改變后一直保持此速度,直到停止),如圖2是△APD的面積s(cm2)和運(yùn)動(dòng)時(shí)間x(秒)的圖象.
(1)求出a值;
(2)設(shè)點(diǎn)P已行的路程為y1(cm),點(diǎn)Q還剩的路程為y2(cm),請(qǐng)分別求出改變速度后,y1、y2和運(yùn)動(dòng)時(shí)間x(秒)的關(guān)系式;
(3)求P、Q兩點(diǎn)都在BC邊上,x為何值時(shí)P、Q兩點(diǎn)相距3cm?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,橫坐標(biāo)、縱坐標(biāo)都為整數(shù)的點(diǎn)稱為整點(diǎn).請(qǐng)你觀察圖中正方形A1B1C1D1,A2B2C2D2,A3B3C3D3…每個(gè)正方形四條邊上的整點(diǎn)的個(gè)數(shù).按此規(guī)律推算出正方形A10B10C10D10四條邊上的整點(diǎn)共有______個(gè).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com