【題目】在ABCD中,對(duì)角線AC、BD相交于O,EF過點(diǎn)O,且AF⊥BC.
(1)求證:△BFO≌△DEO;
(2)若EF平分∠AEC,試判斷四邊形AFCE的形狀,并證明.
【答案】四邊形AFCE是正方形.
【解析】
試題分析:根據(jù)平行四邊形的性質(zhì)和平行線性質(zhì)得出OA=OC,∠OAE=∠OCF,證△AOE≌△COF,推出OE=OF,即可得出四邊形是矩形.
試題解析:(1)證明:∵四邊形ABCD是平行四邊形,
∴OB=OD,AD∥BC,AD=BC,
∴∠OBF=∠ODE,
在△BFO和△DEO中,,
∴△BFO≌△DEO(ASA);
(2)解:四邊形AFCE是正方形;理由如下:
∵△BFO≌△DEO,
∴BF=DE,
∴CF=AE,
∵AD∥BC,
∴四邊形AFCE是平行四邊形,
又∵AF⊥BC,
∴∠AFC=90°,
∴四邊形AFCE是矩形,
∵EF平分∠AEC,
∴∠AEF=∠CEF,
∵AD∥BC,
∴∠AEF=∠CFE,
∴∠CEF=∠CFE,
∴CE=CF,
∴四邊形AFCE是正方形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在圓的周長C=2πr中,常量與變量分別是( ).
A. 2是常量,C、π、r是變量 B. 2是常量,C、r是變量
C. C、2是常量,r是變量 D. 2是常量,C、r是變量
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】體育課上,全班男同學(xué)進(jìn)行了100米測(cè)驗(yàn),達(dá)標(biāo)成績?yōu)?5秒,下表是某小組8名男生的成績測(cè)試記錄,其中“+”表示成績大于15秒.問:
﹣0.8 | +1 | ﹣1.2 | 0 | ﹣0.7 | +0.6 | ﹣0.4 | ﹣0.1 |
(1)這個(gè)小組男生的達(dá)標(biāo)率為多少?( )
(2)這個(gè)小組男生的平均成績是多少秒?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A點(diǎn)的坐標(biāo)為(﹣1,5),B點(diǎn)的坐標(biāo)為(3,3),C點(diǎn)的坐標(biāo)為(5,3),D點(diǎn)的坐 標(biāo)為(3,﹣1),小明發(fā)現(xiàn):線段AB與線段CD存在一種特殊關(guān)系,即其中一條線段繞著某點(diǎn)旋轉(zhuǎn)一個(gè)角度可以得到另一條線段,你認(rèn)為這個(gè)旋轉(zhuǎn)中心的坐標(biāo)是_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明從家出發(fā)(記為原點(diǎn)0)向東走3m,他把數(shù)軸上+3的位置記為點(diǎn)A,他又東走了5m,記為點(diǎn)B,點(diǎn)B表示什么數(shù)?接著他又向西走了10m到點(diǎn)C,點(diǎn)C表示什么數(shù)?請(qǐng)你畫出數(shù)軸,并在數(shù)軸上標(biāo)出點(diǎn)A、點(diǎn)B的位置,這時(shí)如果小明要回家,則小明應(yīng)如何走?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列運(yùn)算正確的是( 。
A. 3a2﹣2a2=1B. (﹣a2b3)2=a4b6
C. (﹣a2)3=﹣a5D. a2a3=a6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,長方形ABCD的邊BC∥x軸.如果A點(diǎn)坐標(biāo)是(1,2),C點(diǎn)坐標(biāo)是(3,-2).
(1)求B點(diǎn)和D點(diǎn)的坐標(biāo);
(2)將這個(gè)長方形向下平移個(gè)單位長度,四個(gè)頂點(diǎn)的坐標(biāo)變?yōu)槎嗌伲空?qǐng)你寫出平移后四個(gè)頂點(diǎn)的坐標(biāo);
(3)如果Q點(diǎn)以每秒米的速度在長方形ABCD的邊上從A出發(fā)到C點(diǎn)停止,沿著A→D→C的路徑運(yùn)動(dòng),那么當(dāng)Q點(diǎn)的運(yùn)動(dòng)時(shí)間分別是1秒、4秒和6秒時(shí),△BCQ的面積各是多少?請(qǐng)你分別求出來.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC是等邊三角形,D為邊AC的中點(diǎn),AE⊥EC,BD=EC.
(1)求證:△BDA≌△CEA;
(2)請(qǐng)判斷△ADE是什么三角形,并說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com