【題目】下面是某同學對多項式進行因式分解的過程.

解:設,

原式(第一步)

(第二步)

(第三步)

.(第四步)

請你回答下列問題:

1)該同學第二步到第三步運用了因式分解的_______;

A.提公因式法 B.平方差公式

C.兩數(shù)和的完全平方公式 D.兩數(shù)差的完全平方公式

2)該同學因式分解的結(jié)果不徹底,請直接寫出因式分解的最后結(jié)果_______;

3)仿照以上方法因式分解:

【答案】1C;(2;(3

【解析】

1)根據(jù)公式法分解因式可得答案;

2)先將分解因式得,由此得到答案;

3)設,得到原式,將代回得到,再將括號內(nèi)根據(jù)完全平方公式分解即可得到答案.

解:(1)由是運用了因式分解的兩數(shù)和的完全平方公式,

故選:C;

2)∵=

=,

故答案為:

3)設,

原式,

,

,

,

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,先把一矩形紙片上下對折,設折痕為;如圖②,再把

疊在折痕線上,得到 .過點作,分別交、于點、

1)求證:

2)在圖②中,如果沿直線再次折疊紙片,點能否疊在直線上?請說明理由;

3)在(2)的條件下,若,求的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖已知∠1=∠2,∠BAD=∠BCD,則下列結(jié)論:ABCD,②ADBC,③∠B=∠D,④∠D=∠ACB,正確的有( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,EAD的中點,延長CE,BA交于點F,連接AC,DF

(1)求證:四邊形ACDF是平行四邊形;

(2)當CF平分∠BCD時,寫出BCCD的數(shù)量關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某超市銷售每臺進價分別為180元、150元的甲、乙兩種型號的電器,下表是近兩周的銷售情況:

銷售時段

銷售數(shù)量

銷售收入

甲種型號

乙種型號

第一周

2

3

1100

第二周

4

5

2000

(進價、售價均保持不變,利潤=銷售收入-進貨成本)

1)求甲、乙兩種型號的電器的銷售單價;

2)若超市準備用不多于5000元的金額再采購這兩種型號的電器共30臺,求甲種型號的電器最多能采購多少臺?

3)在(2)的條件下,超市銷售完這30臺電器能否實現(xiàn)利潤超過1900元的目標?若能,請給出相應的采購方案;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,△ABC中,AC=BC,以BC為直徑的⊙OAB于點D,過點DDE⊥AC于點E,交BC的延長線于點F

求證:

1AD=BD;

2DF⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線的圖象過點C(0,1),頂點為Q(2,3),點Dx軸正半軸上,線段OD=OC.

(1)求拋物線的解析式;

(2)拋物線上是否存在點M,使得⊿CDM是以CD為直角邊的直角三角形?若存在,請求出M點的坐標;若不存在,請說明理由.

(3)將直線CD繞點C逆時針方向旋轉(zhuǎn)45°所得直線與拋物線相交于另一點E,,連接QE.若點P是線段QE上的動點,點F是線段OD上的動點,問:在P點和F點的移動過程中,△PCF的周長是否存在最小值?若存在,求出這個最小值,若不存在,請說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,△OAB的位置如圖所示.將△OAB繞點O順時針旋轉(zhuǎn)90°得△OA1B1;再將△OA1B1繞點O順時針旋轉(zhuǎn)90°得△OA2B2;再將△OA2B2繞點O順時針旋轉(zhuǎn)90°得△OA3B3;…依此類推,第9次旋轉(zhuǎn)得到△OA9B9,則頂點A的對應點A9的坐標為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學課外興趣活動小組準備圍建一個矩形苗圃園,其中一邊靠墻,另外三邊由長為30米的籬笆圍成.已知墻長為18米(如圖所示),設這個苗圃園垂直于墻的一邊長為x米.

(1)若苗圃園的面積為72平方米,求x;

(2)若平行于墻的一邊長不小于8米,這個苗圃園的面積有最大值和最小值嗎?如果有,求出最大值和最小值;如果沒有,請說明理由.

查看答案和解析>>

同步練習冊答案