【題目】如圖,在等腰△ABC 中,∠BAC=120°,AB=AC=2,點(diǎn) D 在邊 BC 上,CD=,將線段 CD 繞點(diǎn) C 逆時(shí)針旋轉(zhuǎn)α°(其中 0<α≤360)到 CE,連接AE,以 AB,AE 為邊作 ABFE,連接 DF,則 DF 的最大值為( )
A. + B. + C. 2+ D. +2
【答案】B
【解析】
作平行四邊形 ABPC,連接 PA 交 BC 于點(diǎn) O,連接 PF.解直角三角形求得 PD= ,由四邊形 PCEF 是平行四邊形,推出 PF=EC=,推出點(diǎn)
F 的運(yùn)動(dòng)軌跡是以 P 為圓心為半徑的圓,由此即可解決問題.
作平行四邊形 ABPC,連接 PA 交 BC 于點(diǎn) O,連接 PF.
∵四邊形 ABPC 是平行四邊形,AB=BC,
∴四邊形 ABPC 是菱形,
∴PA⊥BC,
∵AB=AC=2,∠ABC=120°,
∴∠BAO=60°,
∴OA=OP=,OB=OC=3 ,
∵CD=,
∴OD=2,
∴PD= =,
∵AB∥PC∥PE,AB=PC=EF,
∴四邊形 PCEF 是平行四邊形,
∴PF=CE=CD=,
∴點(diǎn) F 的運(yùn)動(dòng)軌跡是以 P 為圓心為半徑的圓,
∴DF 的最大值故答案選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A,B,C都在拋物線y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,AB∥x軸,∠ABC=135°,且AB=4.
(1)填空:拋物線的頂點(diǎn)坐標(biāo)為 (用含m的代數(shù)式表示);
(2)求△ABC的面積(用含a的代數(shù)式表示);
(3)若△ABC的面積為2,當(dāng)2m﹣5≤x≤2m﹣2時(shí),y的最大值為2,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將矩形ABCD繞點(diǎn)A順時(shí)針旋轉(zhuǎn),得到矩形AB′C′D′,點(diǎn) C的對應(yīng)點(diǎn) C′恰好落在CB的延長線上,邊AB交邊 C′D′于點(diǎn)E.
(1)求證:BC=BC′;
(2)若 AB=2,BC=1,求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是某路燈在鉛垂面內(nèi)的示意圖,燈柱AC的高為11米,燈桿AB與燈柱AC的夾角∠A=120°,路燈采用錐形燈罩,在地面上的照射區(qū)域DE長為18米,從D,E兩處測得路燈B的仰角分別為α和β,且tanα=6,tanβ=,求燈桿AB的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“五一勞動(dòng)節(jié)大酬賓!”,某商場設(shè)計(jì)的促銷活動(dòng)如下:在一個(gè)不透明的箱子里放有4個(gè)相同的小球,球上分別標(biāo)有“0元”、“10元”、“20元”和“50元”的字樣.規(guī)定:在本商場同一日內(nèi),顧客每消費(fèi)滿300元,就可以在箱子里先后摸出兩個(gè)球(第一次摸出后不放回).商場根據(jù)兩小球所標(biāo)金額的和返還相等價(jià)格的購物券,購物券可以在本商場消費(fèi).某顧客剛好消費(fèi)300元.
(1)該顧客至多可得到________元購物券;
(2)請你用畫樹狀圖或列表的方法,求出該顧客所獲得購物券的金額不低于50元的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,DC是⊙O的直徑,點(diǎn)B在圓上,直線AB交CD延長線于點(diǎn)A,且∠ABD=∠C.
(1)求證:AB是⊙O的切線;
(2)若AB=4cm,AD=2cm,求CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn) C、D 在線段 AB 上,△PCD 是等邊三角形,∠APB=120°
(1) 求證:△ACP∽△PDB
(2) 若 PC=3,AC=1,求 BD 的長
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與軸交于,兩點(diǎn),與軸交于點(diǎn),且.
(1)求拋物線的解析式及頂點(diǎn)的坐標(biāo);
(2)判斷的形狀,證明你的結(jié)論;
(3)點(diǎn)是軸上的一個(gè)動(dòng)點(diǎn),當(dāng)的值最小時(shí),求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】去年4月,我市開展了“北海歷史文化進(jìn)課堂”的活動(dòng),北海某校政教處就同學(xué)們對北海歷史文化的了解程度進(jìn)行隨機(jī)抽樣調(diào)查,并繪制成了如下兩幅不完整的統(tǒng)計(jì)圖.
根據(jù)統(tǒng)計(jì)圖中的信息,解答下列問題:
(1)本次調(diào)查的樣本容量是 ,調(diào)查中“了解很少”的學(xué)生占 %;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若全校共有學(xué)生900人,那么該校約有多少名學(xué)生“很了解”北海的歷史文化?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com