【題目】己知一次函數(shù)的圖象與軸、軸分別交于、兩點(diǎn),將這條直線進(jìn)行平移后交軸、軸分別交于、,要使點(diǎn)、、、構(gòu)成的四邊形面積為4,則直線的解析式為__________.
【答案】或.
【解析】
先確定、點(diǎn)的坐標(biāo),利用兩直線平移的問題設(shè)直線的解析式為,則可表示出,,,討論:當(dāng)點(diǎn)在軸的正半軸時,利用三角形面積公式得到,當(dāng)點(diǎn)在軸的負(fù)半軸時,利用三角形面積公式得到,然后分別解關(guān)于的方程后確定滿足條件的的直線解析式.
解:一次函數(shù)的圖象與軸、軸分別交于、兩點(diǎn),
,,,
設(shè)直線的解析式為,
,,,
如圖1,當(dāng)點(diǎn)在軸的正半軸時,則,
依題意得:,
解得(舍去)或,
此時直線的解析式為;
如圖2,當(dāng)點(diǎn)在軸的負(fù)半軸時,則,
依題意得:,
解得(舍去)或,
此時直線的解析式為,
綜上所述,直線的解析式為或.
故答案為:或.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知正方形ABCD的邊長為4,點(diǎn)E,F分別在AD,DC上,AE=DF=1,BE與AF相交于點(diǎn)G,點(diǎn)H為BF的中點(diǎn),連接GH,則GH的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一張矩形紙片ABCD中,AB=4,BC=8,點(diǎn)E,F分別在AD,BC上,將紙片ABCD沿直線EF折疊,點(diǎn)C落在AD上的一點(diǎn)H處,點(diǎn)D落在點(diǎn)G處,有以下四個結(jié)論:①HE=HF;②EC平分∠DCH;③線段BF的取值范圍為3≤BF≤4;④當(dāng)點(diǎn)H與點(diǎn)A重合時,EF=2.以上結(jié)論中,你認(rèn)為正確的有( 。﹤.
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為8,動點(diǎn)P從點(diǎn)A出發(fā)以每秒1個單位的速度沿AB向點(diǎn)B運(yùn)動(點(diǎn)P不與點(diǎn)A,B重合),動點(diǎn)Q從點(diǎn)B出發(fā)以每秒2個單位的速度沿BC向點(diǎn)C運(yùn)動,點(diǎn)P,Q同時出發(fā),當(dāng)點(diǎn)Q停止運(yùn)動,點(diǎn)P也隨之停止.連接AQ,交BD于點(diǎn)E,連接PE.設(shè)點(diǎn)P運(yùn)動時間為x秒,求當(dāng)x為何值時,△PBE≌△QBE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,小王在校園上的A處正面觀測一座教學(xué)樓墻上的大型標(biāo)牌,測得標(biāo)牌下端D處的仰角為30°,然后他正對大樓方向前進(jìn)5m到達(dá)B處,又測得該標(biāo)牌上端C處的仰角為45°.若該樓高為16.65m,小王的眼睛離地面1.65m,大型標(biāo)牌的上端與樓房的頂端平齊.求此標(biāo)牌上端與下端之間的距離(≈1.732,結(jié)果精確到0.1m).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC 中,AD 是∠BAC 的平分線,且 AD=AB,過點(diǎn) C 作 AD 的垂線,交 AD 的延長線于點(diǎn) H.
(1)如圖 1,若∠BAC=60°.
①直接寫出∠B 和∠ACB 的度數(shù);
②若 AB=2,求 AC 和 AH 的長;
(2)如圖 2,用等式表示線段 AH 與 AB+AC 之間的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,正方形ABCD的邊長為4,把三角板的直角頂點(diǎn)放置BC中點(diǎn)E處,三角板繞點(diǎn)E旋轉(zhuǎn),三角板的兩邊分別交邊AB、CD于點(diǎn)G、F.
(1)求證:△GBE∽△GEF.
(2)設(shè)AG=x,GF=y,求Y關(guān)于X的函數(shù)表達(dá)式,并寫出自變量取值范圍.
(3)如圖2,連接AC交GF于點(diǎn)Q,交EF于點(diǎn)P.當(dāng)△AGQ與△CEP相似,求線段AG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將△ABC沿著射線BC方向平移至△A'B'C',使點(diǎn)A落在∠ACB的外角平分線CD上,連結(jié)AA′.
(1)判斷四邊形ACC′A的形狀,并說明理由.
(2)在△ABC中,∠B=90°,AB=24,cos∠BAC=,求CB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD中,AB = 6cm,AD=10 cm,點(diǎn)P在AD 邊上以每秒1 cm的速度從點(diǎn)A向點(diǎn)D運(yùn)動,點(diǎn)Q在BC邊上,以每秒4 cm的速度從點(diǎn)C出發(fā),在CB間往返運(yùn)動,兩個點(diǎn)同時出發(fā),當(dāng)點(diǎn)P到達(dá)點(diǎn)D時停止 (同時點(diǎn)Q也停止),在運(yùn)動以后,以P、D、Q、B四點(diǎn)組成平行四邊形的次數(shù)有( )
A. 1 次 B. 2次 C. 3次 D. 4次
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com