分析 分點D在劣弧$\widehat{EF}$上、點D在優(yōu)弧$\widehat{EF}$上兩種情況,根據(jù)圓周角定理解答.
解答 解:當(dāng)點D在劣弧$\widehat{EF}$上時,
∵⊙O的直徑CD過弦EF的中點G,
∴$\widehat{DE}$=$\widehat{DF}$,
∴∠DCF=$\frac{1}{2}$∠EOG=$\frac{1}{2}$×40°=20°,
當(dāng)點D在優(yōu)弧$\widehat{EF}$上時,
∠DCF=90°-$\frac{1}{2}$×40°=70°,
故答案為:70°或20°.
點評 本題考查的是圓周角定理和垂徑定理的應(yīng)用,掌握在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半是解題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com