【題目】如圖,Rt△ABC中,∠ABC=90°,以AB為直徑的⊙O交AC于點(diǎn)D,E是BC的中點(diǎn),連接DE、OE.
(1)求證:DE與⊙O相切;
(2)求證:BC2=2CDOE;
(3)若cosC= ,DE=4,求AD的長.
【答案】
(1)證明:如圖1,
連接BD,OD,
∵AB為⊙O的直徑,
∴∠ADB=90°,
∴∠BDC=90°,
在Rt△BDC中,E是BC的中點(diǎn),
∴DE=CE=BE= BC,
∴∠3=∠4,
∵OD=OB,
∴∠1=∠2,
∴∠ODE=∠1+∠3=∠2+∠4=90°,
∴DE與⊙O相切
(2)證明:如圖2,
在直角三角形ABC中,∠C+∠A=90°,
在直角三角形BDC中,∠C+∠4=90°,
∴∠A=∠4,
又∵∠C=∠C,
∴△BCD∽△ACB,
,
∴BC2=ACCD,
∵O是AB的中點(diǎn),E是BC的中點(diǎn),
∴AC=2OE,
∴BC2=2CDOE
(3)解:如圖3,
由(2)知,DE= BC,又DE=4,
∴BC=8,
在直角三角形BDC中, =cosC= ,
∴CD= ,
在直角三角形ABC中, =cosC= ,
∴AC=12,
∴AD=AC﹣CD=
【解析】(1)連接BD,OD,運(yùn)用直徑所對的圓周角為90°,結(jié)合直角三角形斜邊中線等于斜邊的一半,即可求證;(2)通過證明△BCD∽△ACB,結(jié)合三角形的中位線定理即可證明;(3)在直角三角形BDC和直角三角形ABC中,運(yùn)用三角函數(shù)即可求出CD和AC的值,進(jìn)而求解.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,MN是⊙O的直徑,MN=10,點(diǎn)A在⊙O上,∠AMN=30°,B為弧AN的中點(diǎn),P是直徑MN上一動(dòng)點(diǎn),則PA+PB的最小值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2﹣5ax﹣6a交x軸于A、B兩點(diǎn)(A左B右),交y軸于點(diǎn)C,直線y=﹣x+b交拋物線于D,交x軸于E,且△ACE的面積為6.
(1)求拋物線的解析式;
(2)點(diǎn)P為CD上方拋物線上一點(diǎn),過點(diǎn)P作x軸的平行線,交直線CD于F,設(shè)P點(diǎn)的橫坐標(biāo)為m,線段PF的長為d,求d與m的函數(shù)關(guān)系式;
(3)在(2)的條件下,過點(diǎn)P作PG⊥CD,垂足為G,若∠APG=∠ACO,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以AB為直徑的⊙O與弦CD相交于點(diǎn)E,且AC=2,AE= ,CE=1.則 的長是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC,點(diǎn)D是直線BC上一點(diǎn)(不與B、C重合),以AD為一邊在AD的右側(cè)作△ADE,使AD=AE,∠DAE=∠BAC,連接CE.
(1)如圖1,當(dāng)點(diǎn)D在線段BC上,如果∠BAC=90°,則∠BCE=度;
(2)設(shè)∠BAC=α,∠BCE=β.
①如圖2,當(dāng)點(diǎn)D在線段BC上移動(dòng),則α,β之間有怎樣的數(shù)量關(guān)系?請說明理由;
②當(dāng)點(diǎn)D在直線BC上移動(dòng),則α,β之間有怎樣的數(shù)量關(guān)系?請直接寫出你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)y=2x+b(b為常數(shù))的圖象位于x軸下方的部分沿x軸翻折至其上方后,所得的折線是函數(shù)y=|2x+b|(b為常數(shù))的圖象.若該圖象在直線y=2下方的點(diǎn)的橫坐標(biāo)x滿足0<x<3,則b的取值范圍為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=BC=4,將△ABC折疊,使點(diǎn)A落在BC邊上的點(diǎn)D處,EF為折痕,若AE=3,則sin∠BFD的值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,菱形ABCD中,對角線AC,BD相交于點(diǎn)O,且AC=12cm,BD=16cm.點(diǎn)P從點(diǎn)B出發(fā),沿BA方向勻速運(yùn)動(dòng),速度為1cm/s;同時(shí),直線EF從點(diǎn)D出發(fā),沿DB方向勻速運(yùn)動(dòng),速度為1cm/s,EF⊥BD,且與AD,BD,CD分別交于點(diǎn)E,Q,F(xiàn);當(dāng)直線EF停止運(yùn)動(dòng)時(shí),點(diǎn)P也停止運(yùn)動(dòng).連接PF,設(shè)運(yùn)動(dòng)時(shí)間為t(s)(0<t<8).設(shè)四邊形APFE的面積為y(cm2),則下列圖象中,能表示y與t的函數(shù)關(guān)系的圖象大致是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小聰計(jì)劃中考后參加“我的中國夢”夏令營活動(dòng),需要一名家長陪同,爸爸、媽媽用猜拳的方式確定由誰陪同,即爸爸、媽媽都隨機(jī)作出“石頭”、“剪刀”、“布”三種手勢(如圖)中的一種,規(guī)定:“石頭”勝“剪刀”,“剪刀”勝“布”,“布”勝“石頭”,手勢相同,不分勝負(fù)
(1)爸爸一次出“石頭”的概率是多少?
(2)媽媽一次獲勝的概率是多少?請用列表或畫樹狀圖的方法加以說明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com