【題目】如圖,在邊長為12cm的等邊三角形ABC中,點(diǎn)P從點(diǎn)A開始沿AB邊向點(diǎn)B以每秒鐘1cm的速度移動,點(diǎn)Q從點(diǎn)B開始沿BC邊向點(diǎn)C以每秒鐘2cm的速度移動。若P、Q分別從A、B同時(shí)出發(fā),其中任意一點(diǎn)到達(dá)目的地后,兩點(diǎn)同時(shí)停止運(yùn)動,求:
(1)經(jīng)過6秒后,BP= cm,BQ=cm;
(2)經(jīng)過幾秒后,△BPQ是直角三角形?
(3)經(jīng)過幾秒△BPQ的面積等于 cm2 ?
【答案】
(1)6;12
(2)
∵△ABC是等邊三角形,
∴AB=AC=12cm,∠A=∠B=∠C=60°,
當(dāng)∠PQB=90°時(shí),
∴∠BPQ=30°,
∴BP=2BQ
∵BP=12-x,BQ=2x,
∴12-x=2×2x,
∴
當(dāng)∠QPB=90°時(shí),
∴∠PQB=30°,
∴BQ=2PB,
∴2x=2(12-x),
x=6
答:6秒或 秒時(shí),△BPQ是直角三角形;
(3)
作QD⊥AB于D,
∴∠QDB=90°,
∴∠DQB=30°,
∴DB =0.5 BQ=x,
在Rt△DBQ中,由勾股定理,得
解得;x1=10,x2=2,
∵x=10時(shí),2x>12,故舍去
∴x=2.
答:經(jīng)過2秒△BPQ的面積等于 cm2
【解析】(1)解:由題意,得
AP=6cm,BQ=12cm.
∵△ABC是等邊三角形
∴AB=BC=12cm,
∴BP=12-6=6cm.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用等邊三角形的性質(zhì)和勾股定理的概念的相關(guān)知識可以得到問題的答案,需要掌握等邊三角形的三個(gè)角都相等并且每個(gè)角都是60°;直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小紅的媽媽買了4筐白菜,以每筐25千克為標(biāo)準(zhǔn),超過的千克數(shù)記為正數(shù),不足的千克數(shù)記為負(fù)數(shù),稱重后的記錄分別為+0.25,-1, +0.5, 0.75。小紅快速準(zhǔn)確地算出了4筐白菜的總質(zhì)量為( )
A. 一1千克 B. 1千克 C. 99千克 D. 101千克
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平行四邊形的周長為24,相鄰兩邊的差為2,則平行四邊形的各邊長為( ).
A. 4,4,8,8 B. 5,5,7,7 C. 5.5,5.5,6.5,6.5 D. 3,3,9,9
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知一次函數(shù)y=x+2與y=-2x+6的圖象相交于點(diǎn)A,函數(shù)y=-2x+6的圖象分別交x軸、y軸于點(diǎn)B、C,函數(shù)y=x+2的圖象分別與x軸、y軸交于點(diǎn)E、D.
(1)求點(diǎn)A的坐標(biāo);
(2)求△ABE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】張勤同學(xué)的父母在外打工,家中只有年邁多病的奶奶.星期天早上,李老師從家中出發(fā)步行前往張勤家家訪.6分鐘后,張勤從家出發(fā)騎車到相距1200米的藥店給奶奶買藥,停留14分鐘后以相同的速度按原路返回,結(jié)果與李老師同時(shí)到家.張勤家、李老師家、藥店都在東西方向筆直大路上,且藥店在張勤家與李老師家之間.在此過程中設(shè)李老師出發(fā)t(0≤t≤32)分鐘后師生二人離張勤家的距離分別為S1、S2 . S1與t之間的函數(shù)關(guān)系如圖所示,請你解答下列問題:
(1)李老師步行的速度為。
(2)求S2與t之間的函數(shù)關(guān)系式,并在如圖所示的直角坐標(biāo)系中畫出其函數(shù)圖象;
(3)張勤出發(fā)多長時(shí)間后在途中與李老師相遇?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com