【題目】如圖,點(diǎn)O是等邊三角形ABC內(nèi)的一點(diǎn),∠BOC=150°,將△BOC繞點(diǎn)C按順時(shí)針旋轉(zhuǎn)得到△ADC,連接OD,OA.
(1)求∠ODC的度數(shù);
(2)若OB=4,OC=5,求AO的長(zhǎng).
【答案】(1)60°;(2)
【解析】
(1)根據(jù)旋轉(zhuǎn)的性質(zhì)得到三角形ODC為等邊三角形即可求解;
(2)由旋轉(zhuǎn)的性質(zhì)得:AD=OB=4,結(jié)合題意得到∠ADO=90°.則在Rt△AOD中,由勾股定理即可求得AO的長(zhǎng).
(1)由旋轉(zhuǎn)的性質(zhì)得:CD=CO,∠ACD=∠BCO.
∵∠ACB=∠ACO+∠OCB=60°,
∴∠DCO=∠ACO+∠ACD=∠ACO+∠OCB=60°,
∴△OCD為等邊三角形,
∴∠ODC=60°.
(2)由旋轉(zhuǎn)的性質(zhì)得:AD=OB=4.
∵△OCD為等邊三角形,∴OD=OC=5.
∵∠BOC=150°,∠ODC=60°,∴∠ADO=90°.
在Rt△AOD中,由勾股定理得:AO=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,校園內(nèi)有一棵與地面垂直的樹,數(shù)學(xué)興趣小組兩次測(cè)量它在地面上的影子,第一次是陽(yáng)光與地面成60°角時(shí),第二次是陽(yáng)光與地面成30°角時(shí),兩次測(cè)量的影長(zhǎng)相差8米,則樹高_____________米(結(jié)果保留根號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(-2,1),B(-1,4),C(-3,2).
(1)畫出△ABC關(guān)于點(diǎn)B成中心對(duì)稱的圖形△A1BC1;
(2)以原點(diǎn)O為位似中心,相似比為1∶2,在y軸的左側(cè),畫出△ABC放大后的圖形△A2B2C2,并直接寫出點(diǎn)C2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y1=kx+2與x軸交于點(diǎn)A(m,0)(m>4),與y軸交于點(diǎn)B,拋物線y2=ax2﹣4ax+c(a<0)經(jīng)過A,B兩點(diǎn).P為線段AB上一點(diǎn),過點(diǎn)P作PQ∥y軸交拋物線于點(diǎn)Q.
(1)當(dāng)m=5時(shí),
①求拋物線的關(guān)系式;
②設(shè)點(diǎn)P的橫坐標(biāo)為x,用含x的代數(shù)式表示PQ的長(zhǎng),并求當(dāng)x為何值時(shí),PQ=;
(2)若PQ長(zhǎng)的最大值為16,試討論關(guān)于x的一元二次方程ax2﹣4ax﹣kx=h的解的個(gè)數(shù)與h的取值范圍的關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,河流兩岸PQ,MN互相平行,C、D是河岸PQ上間隔50m的兩個(gè)電線桿,某人在河岸MN上的A處測(cè)得∠DAB=30°,然后沿河岸走了100m到達(dá)B處,測(cè)得∠CBF=70°,求河流的寬度(結(jié)果精確到個(gè)位,=1.73,sin70°=0.94,cos70°=0.34,tan70°=2.75)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】ABCD中,E是CD邊上一點(diǎn),
(1)將△ADE繞點(diǎn)A按順時(shí)針方向旋轉(zhuǎn),使AD、AB重合,得到△ABF,如圖1所示.觀察可知:與DE相等的線段是 ,∠AFB=∠
(2)如圖2,正方形ABCD中,P、Q分別是BC、CD邊上的點(diǎn),且∠PAQ=45°,試通過旋轉(zhuǎn)的方式說明:DQ+BP=PQ;
(3)在(2)題中,連接BD分別交AP、AQ于M、N,你還能用旋轉(zhuǎn)的思想說明BM2+DN2=MN2嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得到△EDC.若點(diǎn)A,D,E在同一條直線上,∠ACB=20°,則∠ADC的度數(shù)是
A. 55° B. 60° C. 65° D. 70°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,矩形的邊分別在軸,軸上,點(diǎn)的坐標(biāo)為,點(diǎn)在矩形的內(nèi)部,點(diǎn)在邊上,滿足∽,當(dāng)是等腰三角形時(shí),點(diǎn)坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AB=AD=CD,以AB為直徑的⊙O經(jīng)過點(diǎn)C,連接AC、OD交于點(diǎn)E.
(1)求證:OD∥BC;
(2)若AC=2BC,求證:DA與⊙O相切.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com