在同一時(shí)刻兩根木竿在太陽光下的影子如圖所示,其中木竿AB=2米,它的影子BC=1.6米,木竿PQ的影子有一部分落在墻上,PM=1.2米,MN=0.8米,則木竿PQ的長度是       米.
2.3.

試題分析:過N點(diǎn)作ND⊥PQ于D,

,
又∵AB=2,BC=1.6,PM=1.2,NM=0.8,
∴QD==1.5,
∴PQ=QD+DP=QD+NM=1.5+0.8=2.3(米).
答:木竿PQ的長度為2.3米.
故答案是2.3.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平行四邊形中,過點(diǎn),垂足為點(diǎn),連接,為線段上一點(diǎn),且

(1)求證:
(2)若,,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

閱讀材料

如圖①,△ABC與△DEF都是等腰直角三角形,ACB=∠EDF=90°,且點(diǎn)D在AB邊上,AB、EF的中點(diǎn)均為O,連結(jié)BF、CD、CO,顯然點(diǎn)C、F、O在同一條直線上,可以證明△BOF≌△COD,則BF=CD.解決問題:
(1)將圖①中的Rt△DEF繞點(diǎn)O旋轉(zhuǎn)得到圖②,猜想此時(shí)線段BF與CD的數(shù)量關(guān)系,并證明你的結(jié)論;
(2)如圖③,若△ABC與△DEF都是等邊三角形,AB、EF的中點(diǎn)均為O,上述(1)中的結(jié)論仍然成立嗎?如果成立,請(qǐng)說明理由;如不成立,請(qǐng)求出BF與CD之間的數(shù)量關(guān)系;
(3)如圖④,若△ABC與△DEF都是等腰三角形,AB、EF的中點(diǎn)均為0,且頂角∠ACB=∠EDF=α,請(qǐng)直接寫出的值(用含α的式子表示出來)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,△ABC中,AD⊥BC于D,且有下列條件:(1)∠B+∠DAC=90°;(2)∠B=∠DAC;(3);(4)AB2=BD·BC其中一定能夠判定△ABC是直角三角形的共有( 。
A.3個(gè)B.2個(gè)C.1個(gè)D.0個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

兩個(gè)相似三角形周長的比是2:3,則它們的面積比是
A.2:3B.3:2C.4:9D.9:4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,△ABC中,D是AC的中點(diǎn),E是BC延長線上一點(diǎn),過A作AH∥BE,連結(jié)ED并延長交AB于F,交AH于H,如果AB=4AF,EH=8,則DF的長為      

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,D是△ABC的邊BC上一點(diǎn),已知AB=4,AD=2.∠DAC=∠B,若△ABC的面積為,則△ACD的面積為     

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,小明同學(xué)用自制的直角三角形紙板DEF測量樹的高度AB,他調(diào)整自己的位置,設(shè)法使斜邊DF保持水平,并且邊DE與點(diǎn)B在同一直線上.已知紙板的兩條直角邊DF=50cm,EF=30cm,測得邊DF離地面的高度AC=1.5m,CD=20m,則樹高AB為(   )
A.12mB.13.5m C.15mD.16.5m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知,且,則_______.

查看答案和解析>>

同步練習(xí)冊(cè)答案