【題目】如圖,點D在⊙O的直徑AB的延長線上,點C在⊙O上,AC=CD,∠ACD=120°.
(1)求證:CD是⊙O的切線;
(2)若⊙O的半徑為4,求圖中陰影部分的面積.

【答案】
(1)解:連接OC,

∵AC=CD,∠ACD=120°,

∴∠A=∠D=30°,

∵OA=OC,

∴∠ACO=∠A=30°,

∴∠COD=60°

∴∠OCD=180°﹣∠COD﹣∠D=90°

∴OC⊥CD

∴CD是⊙O的切線;


(2)解:由(1)可知:∠COD=60°,

∴S扇形BOC= =

在Rt△OCD中,

tan60°=

∴CD=4 ,

∴SOCD= OC×CD=8 ,

∴陰影部分面積為:8


【解析】(1)連接OC,易證∠A=∠D=30°,由于OA=OC,所以∠ACO=∠A=30°,從而可知∠OCD=90°,即OC⊥CD.(2)分別求出扇形BOC與直角三角形OCD的面積即可求出陰影部分面積.
【考點精析】本題主要考查了扇形面積計算公式的相關(guān)知識點,需要掌握在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形;扇形面積S=π(R2-r2)才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料,然后解答后面的問題。

我們知道方程有無數(shù)組解,但在實際生活中我們往往只需要求出其正整數(shù)解。例:由,得,( 為正整數(shù))

則有.又為正整數(shù),則為整數(shù).

由2與3互質(zhì),可知: 為3的倍數(shù),從而,代入.

的正整數(shù)解為

問題:(1)若為自然數(shù),則滿足條件的值有_____________

(2)請你寫出方程的所有正整數(shù)解:_________________________

(3)若,請用含的式子表示,并求出它的所有整數(shù)解。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算題

(1)﹣6﹣8+5﹣(﹣2);

(2)(﹣49)﹣(+91)﹣(﹣5)+(﹣9);

(3);

(4)()×(﹣24);

(5)(﹣3.59)×()﹣2.41×()+6×();

(6)﹣23+|2﹣3|﹣2×(﹣1)2014

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩臺機(jī)器加工相同的零件,甲機(jī)器加工160個零件所用的時間與乙機(jī)器加工120個零件所用的時間相等.已知甲、乙兩臺機(jī)器每小時共加工35個零件,求甲、乙兩臺機(jī)器每小時各加工多少個零件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,相距5kmA、B兩地間有一條筆直的馬路,C地位于AB兩地之間且距A2km,小明同學(xué)騎自行車從A地出發(fā)沿馬路以每小時5km的速度向B地勻速運(yùn)動,當(dāng)?shù)竭_(dá)B地后立即以原來的速度返回。到達(dá)A地停止運(yùn)動,設(shè)運(yùn)動時間為t(小時).小明的位置為點P、若以點C為坐標(biāo)原點,以從AB為正方向,用1個單位長度表示1km,解答下列各問:

(1)指出點A所表示的有理數(shù);

(2)t =0.5時,點P表示的有理數(shù);

(3)當(dāng)小明距離C1km時,直接寫出所有滿足條件的t值;

(4)在整個運(yùn)動過程中,求點P與點A的距離(用含t的代數(shù)式表示);

(5)用含t的代數(shù)式表示點P表示的有理數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正六邊形ABCDEF的邊長為6cm,P是對角線BE上一動點,過點P作直線l與BE垂直,動點P從B點出發(fā)且以1cm/s的速度勻速平移至E點.設(shè)直線l掃過正六邊形ABCDEF區(qū)域的面積為S(cm2),點P的運(yùn)動時間為t(s),下列能反映S與t之間函數(shù)關(guān)系的大致圖象是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】由大小相同(棱長為1分米)的小立方塊搭成的幾何體如下圖.

(1)請在右圖的方格中畫出該幾何體的俯視圖和左視圖;

(2)圖中有 塊小正方體,它的表面積(含下底面)為 ;

(3)用小立方體搭一幾何體,使得它的俯視圖和左視圖與你在上圖方格中所畫的圖一致,則這樣的幾何體最少要_______個小立方塊,最多要_______個小立方塊.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在長方形ABCD中,AB=12cm,BC=8cm,點PA點出發(fā),沿A→B→C→D路線運(yùn)動,到D點停止;點QD點出發(fā),沿D→C→B→A運(yùn)動,到A點停止.若點P、點Q同時出發(fā),點P的速度為每秒1cm,點Q的速度為每秒2cm,用x(秒)表示運(yùn)動時間.

(1)求點P和點Q相遇時的x值.

(2)連接PQ,當(dāng)PQ平分矩形ABCD的面積時求運(yùn)動時間x值.

(3)若點P、點Q運(yùn)動到6秒時同時改變速度,點P的速度變?yōu)槊棵?/span>3cm,點Q的速度為每秒1cm,求在整個運(yùn)動過程中,P、點Q在運(yùn)動路線上相距路程為20cm時運(yùn)動時間x值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)你的經(jīng)驗,分別求下列事件的概率:

(1)在一個不透明的袋中裝有紅球3個,白球2個,黑球1個,每種球除顏色外其余都相同,搖勻后隨機(jī)地從袋中取出1個球,取到紅球的概率.

(2)投擲一枚普通正方體骰子,出現(xiàn)的點數(shù)為7的概率.

(3)投擲兩枚普通硬幣,出現(xiàn)兩個正面的概率.

查看答案和解析>>

同步練習(xí)冊答案