【題目】如圖是某景區(qū)每日利潤y1(元)與當(dāng)天游客人數(shù)x(人)的函數(shù)圖像.為了吸引游客,該景區(qū)決定改革,改革后每張票價(jià)減少20元,運(yùn)營成本減少800元.設(shè)改革后該景區(qū)每日利潤為y2(元).(注:每日利潤=票價(jià)收入-運(yùn)營成本)

1)解釋點(diǎn)A的實(shí)際意義:______.

2)分別求出y1、y2關(guān)于x的函數(shù)表達(dá)式;

3)當(dāng)游客人數(shù)為多少人時(shí),改革前的日利潤與改革后的日利潤相等?

【答案】1)改革前某景區(qū)每日運(yùn)營成本為2800元;(2y1120x2800;y2100 x2000.(340

【解析】

(1)根據(jù)題意可得點(diǎn)A的實(shí)際意義是改革前某景區(qū)每日運(yùn)營成本為2800元;(2)利用待定系數(shù)法即可求出y1關(guān)于x的函數(shù)表達(dá)式;進(jìn)而根據(jù)票價(jià)減少20元,運(yùn)營成本減少800元可得y2關(guān)于x的解析式;(3)令y1y2,列方程求出x的值即可得答案.

1)改革前某景區(qū)每日運(yùn)營成本為2800元;

2)設(shè)y1x之間的函數(shù)表達(dá)式為y1kxbkb為常數(shù),k≠0),

根據(jù)題意,當(dāng)x0時(shí),y1=-2800;當(dāng)x50時(shí),y13200

所以,

解得

所以,y1x之間的函數(shù)表達(dá)式為y1120x2800

根據(jù)題意,y2x之間的函數(shù)表達(dá)式為y2100x2000

3)根據(jù)題意,當(dāng)y1y2時(shí),得120x2800100x2000

解得x40

答:當(dāng)游客人數(shù)為40人時(shí),改革前的日利潤與改革后的日利潤相等.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某數(shù)學(xué)興趣小組在全校范圍內(nèi)隨機(jī)抽取了一部分學(xué)生進(jìn)行風(fēng)味泰興﹣﹣我最喜愛的泰興美食調(diào)查活動(dòng),將調(diào)查問卷整理后繪制成如下圖所示的不完整的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.

調(diào)查問卷在下面四種泰興美食中,你最喜愛的是( 。▎芜x)

A.黃橋燒餅 B.宣堡小餛飩C.蟹黃湯包 D.劉陳豬四寶

請(qǐng)根據(jù)所給信息解答下列問題:

1)本次抽樣調(diào)查的樣本容量是   ;

2)補(bǔ)全條形統(tǒng)計(jì)圖,并計(jì)算扇形統(tǒng)計(jì)圖中“A”部分所對(duì)應(yīng)的圓心角的度數(shù)為   ;

3)若全校有1200名學(xué)生,請(qǐng)估計(jì)全校學(xué)生中最喜愛蟹黃湯包的學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,將一塊含有45°角的直角三角板如圖放置,直角頂點(diǎn)C的坐標(biāo)為(1,0),頂點(diǎn)A的坐標(biāo)為(0,2),頂點(diǎn)B恰好落在第一象限的雙曲線上,現(xiàn)將直角三角板沿x軸正方向平移,當(dāng)頂點(diǎn)A恰好落在該雙曲線上時(shí)停止運(yùn)動(dòng),則此時(shí)點(diǎn)C的對(duì)應(yīng)點(diǎn)C′的坐標(biāo)為(  )

A. ,0) B. (2,0) C. ,0) D. (3,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2014山東淄博)如圖,四邊形ABCD中,AC⊥BDBD于點(diǎn)E,點(diǎn)F,M分別是AB,BC的中點(diǎn),BN平分∠ABEAM于點(diǎn)N,ABACBD,連接MF,NF

(1)判斷△BMN的形狀,并證明你的結(jié)論;

(2)判斷△MFN△BDC之間的關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C90°,AC8,BC6,DAB邊上的動(dòng)點(diǎn),過點(diǎn)DDEAB交邊AC于點(diǎn)E,過點(diǎn)EEFDEBC于點(diǎn)F,連接DF

1)當(dāng)AD4時(shí),求EF的長度;

2)求DEF的面積的最大值;

3)設(shè)ODF的中點(diǎn),隨著點(diǎn)D的運(yùn)動(dòng),則點(diǎn)O的運(yùn)動(dòng)路徑的長度為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直角△ABC的三個(gè)頂點(diǎn)分別是A(﹣3,1),B(0,3),C(0,1)

(1)將△ABC以點(diǎn)C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,畫出旋轉(zhuǎn)后對(duì)應(yīng)的△A1B1C1;

(2)分別連結(jié)AB1、BA1后,求四邊形AB1A1B的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖山坡上有一根旗桿AB,旗桿底部B點(diǎn)到山腳C點(diǎn)的距離BC米,斜坡BC的坡度i=1 .小明在山腳的平地F處測(cè)量旗桿的高,點(diǎn)C到測(cè)角儀EF的水平距離CF=1米,從E處測(cè)得旗桿頂部A的仰角為45°,旗桿底部B的仰角為20°

1)求坡角∠BCD;

2)求旗桿AB的高度.

(參考數(shù)值:sin20°≈0.34,cos20°≈0.94tan20°≈0.36

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線x軸于點(diǎn),交y軸于點(diǎn)C

求拋物線的解析式;

如圖2D點(diǎn)坐標(biāo)為,連結(jié)若點(diǎn)H是線段DC上的一個(gè)動(dòng)點(diǎn),求的最小值.

如圖3,連結(jié)AC,過點(diǎn)Bx軸的垂線l,在第三象限中的拋物線上取點(diǎn)P,過點(diǎn)P作直線AC的垂線交直線l于點(diǎn)E,過點(diǎn)Ex軸的平行線交AC于點(diǎn)F,已知

求點(diǎn)P的坐標(biāo);

在拋物線上是否存在一點(diǎn)Q,使得成立?若存在,求出Q點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】環(huán)保局對(duì)某企業(yè)排污情況進(jìn)行檢測(cè),結(jié)果顯示:所排污水中硫化物的濃度超標(biāo),即硫化物的濃度超過最高允許的1.0 mg/L.環(huán)保局要求該企業(yè)立即整改,在15天以內(nèi)(含15天)排污達(dá)標(biāo).整改過程中,所排污水中硫化物的濃度y(mg/L)與時(shí)間x(天)的變化規(guī)律如圖所示,其中線段AB表示前3天的變化規(guī)律,其中第3天時(shí)硫化物的濃度降為4 mg/L.從第3天起所排污水中硫化物的濃度y與時(shí)間x滿足下面表格中的關(guān)系:

時(shí)間x(天)

3

4

5

6

8

……

硫化物的濃y(mg/L)

4

3

2.4

2

1.5

(1)求整改過程中當(dāng)0≤x<3時(shí),硫化物的濃度y與時(shí)間x的函數(shù)表達(dá)式;

(2)求整改過程中當(dāng)x≥3時(shí),硫化物的濃度y與時(shí)間x的函數(shù)表達(dá)式;

(3)該企業(yè)所排污水中硫化物的濃度,能否在15天以內(nèi)不超過最高允許的1.0 mg/L?為什么?

查看答案和解析>>

同步練習(xí)冊(cè)答案