分析 連接AE,BE,DF,CF,可證明三角形AEB是等邊三角形,利用等邊三角形的性質(zhì)和勾股定理即可求出邊AB上的高線,同理可求出CD邊上的高線,進(jìn)而求出EF的長(zhǎng).
解答 解:連接AE,BE,DF,CF.如圖所示:
∵以頂點(diǎn)A、B為圓心,2為半徑的兩弧交于點(diǎn)E,AB=2,
∴AB=AE=BE,
∴△AEB是等邊三角形,
∴AN=$\frac{1}{2}$AB=1,
∴邊AB上的高線為EN=$\sqrt{{2}^{2}-{1}^{2}}$=$\sqrt{3}$,
延長(zhǎng)EF交AB于N,并反向延長(zhǎng)EF交DC于M,
則EM=2-EN=2-$\sqrt{3}$,
∴NF=EM=2-$\sqrt{3}$,
∴EF=2-EM-NF=2$\sqrt{3}$-2.
故答案為:2$\sqrt{3}$-2.
點(diǎn)評(píng) 本題考查了正方形的性質(zhì)和等邊三角形的判定和性質(zhì)以及勾股定理的運(yùn)用;通過添加輔助線構(gòu)造等邊三角形是解決問題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | x≥-1 | B. | -1≤x<$\frac{2}{3}$ | C. | x>$\frac{2}{3}$ | D. | x≤-1 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com